针对AUV抵近目标前沿海区执行任务而可能被海岸声呐探测,从而影响AUV隐蔽突防的问题。通过构建海岸声呐对AUV探测距离预估模型、海岸声呐对目标探测概率模型,从探测距离、概率2个方面,分析海岸声呐对AUV隐蔽突防的影响,给出了声呐探测距离与航速、海况对应变化关系及海岸声呐对AUV探测概率拟合曲线。在获取AUV航速、海况等级、海岸声呐布设位置等关键信息后,可预报声呐对AUV的探测距离及不同区域的探测概率。最后基于典型AUV任务态势设定了AUV隐蔽突防威胁等级表,提出AUV在不同情况下的隐蔽突防策略。
Aiming at the problem that different ocean current environments will produce different degrees of errors in the position of AUV navigation ships, by constructing an AUV movement model in an ocean current environment, based on the AUV navigation ship position distance error and the ship position error evaluation index in the ocean current area, the impact of the ocean current environment on the AUV navigation error is analyzed. The results show that when the ocean current flow direction or velocity reaches a certain value, the influence on the distance and azimuth error of the AUV navigating ship's position increases abruptly. Compared with ocean current flow direction, ocean current velocity has a more direct influence on AUV ship position error. Under certain circumstances, ocean currents of different directions and sizes will have a consistent effect on the position error of AUV navigation. By setting the AUV position error threshold, the direction and size of the current that can cause the AUV to reach the error threshold are reversed, which can provide auxiliary decision-making for AUV route planning. Avoid the sea area with corresponding ocean currents, and improve the AUV's ability to accurately deliver weapons, equipment and materials over long distances.
2023,45(17): 135-138 收稿日期:2022-08-12
DOI:10.3404/j.issn.1672-7649.2023.17.026
分类号:U666.7
基金项目:海军大连舰艇学院科研发展基金资助项目(DJYKYKT2021-051)
作者简介:王郁茗(1990-),男,讲师,研究方向为无人水下作战
参考文献:
[1] MILLER A, MILLER B, MILLER G. On AUV control with the aid of position estimation algorithms based on acoustic seabed sensing and DOA measurements[J]. Sensors, 2019, 19(24): 5520
[2] 石超雄, 陶剑锋, 张路蔚. 声呐目标跟踪关联中的模糊关联方法[J]. 声学技术, 39(2): 141–145.
[3] 陈立纲, 李向阳. 多基地声呐发射时序优化设计技术[J]. 声学与电子工程, 2021(3): 12–16.
[4] 张东俊, 黎潇, 米杨. 基于交战进程的潜艇声感知行为机理方程[J]. 兵工学报, 2020, 41(5): 958–966.ZHANG Dong-jun, LI Xiao, MI Yang. Behavior mechanism equation of submarine acoustic perception based on engagement process [J]. Journal of Military Industry, 2020, 41(5): 958–966.
[5] 朱理, 董博文, 王雪仁, 等. 基于被动声呐方程的水下航行器声学安全态势研究[J]. 舰船科学技术, 2021, 43(11): 90–94.ZHU Li, DONG Bo-wen, WANG Xue-ren, et al. Study on acoustic safety situation of underwater vehicle based on passive sonar equation [J]. Ship Science and Technology, 2021, 43(11): 90–94.
[6] 禚江浩, 王玲, 许可, 万建伟. 用于被动声纳宽带目标检测的多水听器互相关方法[J]. 信号处理, 2021, 37(9): 1691–1700.LI Jiang-hao, WANG Ling, XU Ke, WAN Jian-wei. Multi hydrophone cross-correlation method for passive sonar wideband target detection [J]. Signal Processing, 2021, 37(9): 1691–1700.
[7] 李登峰, 许腾. 海军作战运筹分析及应用[M]. 北京: 国防工业出版社, 2007: 16–18.