船舶运输在全球经济中扮演着重要角色,人工值守经常会由于人员疏忽造成船舶和船舶碰撞,造成巨大的经济损失和环境污染。本文提出一种基于嵌入式的船舶智能预警系统,对激光测距技术和机器视觉技术进行阐述和分析,设计了船舶嵌入式智能预警系统的整体架构,有效解决了多源数据融合、位置感知、环境感知等问题。通过使用YOLO V7进行训练,实现了对不同船舶的识别且具有较高的准确率,在实际应用中可以更加有效地对船舶产生潜在的威胁作出综合性判断。本文设计的船舶嵌入式智能预警系统为实现船舶无人值守提供了必要辅助。
Ship transportation plays an important role in the global economy, and the collision between ship and ship is often caused by the negligence of personnel, resulting in huge economic losses and environmental pollution. This paper proposes a ship intelligent early warning system based on embedded, describes and analyzes the laser ranging technology and machine vision technology, designs the overall architecture of the ship embedded intelligent early warning system, effectively solves the problems of multi-source data fusion, location perception, environment perception, etc., and realizes the identification of different ships through training with YOLO V7. It has a high accuracy rate and can make a comprehensive judgment of potential threats to ships more effectively in practical applications. The ship embedded intelligent early warning system designed in this paper provides necessary assistance for the realization of unattended ships.
2023,45(17): 178-181 收稿日期:2023-04-08
DOI:10.3404/j.issn.1672-7649.2023.17.036
分类号:U667.65
作者简介:裴宇(1996-),男,硕士,研究方向为信息管理与智能科学
参考文献:
[1] 何渡, 肖丝雨, 任俊伟, 等. 利用DBSCAN优化船舶领域算法的实时碰撞预警模型[J]. 软件导刊, 2021, 20(2): 107-113.HE Du, XIAO Si-yu, REN Jun-wei, et al. Real-time collision early warning model using DBSCAN optimization ship domain algorithm[J]. Software Guide, 2021, 20(2): 107-113.
[2] 王小春, 吴寅松, 骆曹飞. 一种基于多源数据融合的渔船避碰预警终端[J]. 船电技术, 2022, 42(3): 28-29+33.
[3] 张卫成, 王永涛, 刘兴龙. 多传感器融合的航标碰撞智能监测系统设计应用[J]. 中国海事, 2023(6): 59-61.ZHANG Wei-cheng, WANG Yong-tao, LIU Xing-long. Design and application of intelligent navigation beacon collision monitoring system based on multi-sensor fusion[J]. China Maritime Journal, 2023(6): 59-61.
[4] 王端伟. 雷达和GIS系统在内河船舶防碰撞中的应用研究[J]. 珠江水运, 2023(3): 93-95.WANG Duan-wei. Application of radar and GIS system in collision avoidance of inland vessels[J]. Pearl River Water Transport, 2023(3): 93-95.
[5] 吴兵, 郭帆, 付姗姗, 等. 基于模糊逻辑的船撞桥风险预警方法[J]. 中国航海, 2019, 42(2): 47-51+65.WU Bing, GUO Fan, FU Shanshan, et al. Early warning method of ship collision bridge risk based on fuzzy logic[J]. Navigation of China, 2019, 42(2): 47-51+65.
[6] 王锡通, 李治, 张晓明. 面向内河航道中小桥梁的主动防撞预警系统设计[J]. 上海公路, 2019, (1): 56-60+5.
[7] 王莹, 欧阳文全, 赵建, 等. 船舶防撞预警视频监测技术在淮河入海航道的应用[J]. 中国水运(下半月), 2018, 18(2): 51-52.WANG Ying, OUYANG Wen-quan, ZHAO Jian, et al. Application of ship collision avoidance early warning video monitoring technology in the channel into the sea of Huaihe River[J]. China Water Transport(Second Half Month), 2018, 18(2): 51-52.