加筋板是船体结构的重要组成部分。采用一阶屈曲分析得到的加筋板失稳模态以局部变形为主,按一阶屈曲模态引入的初始缺陷不能很好反映船体甲板结构的整体缺陷,为了进一步推广高等分析法在船舶与海洋结构物中的应用,本文提出一种能反映船体整层甲板、舱段乃至全船结构整体缺陷分布的失稳模态型初始缺陷引入方式。采用有限元软件Ansys,对加筋板不同初始缺陷形态下的极限强度进行分析并与试验结果对比,验证了引入失稳模态型初始缺陷在加筋板极限强度计算中的可行性与有效性。有限元计算结果表明,与采用一阶屈曲型初始缺陷相比,采用失稳模态型初始缺陷得到的加筋板极限强度更低,更能保证结构的安全性。考虑失稳模态型初始缺陷,对31个单一参数变量加筋板进行极限强度分析。计算结果表明,在合理范围内增高加强筋是提高加筋板极限强度的最有效手段。
Stiffened panel is an important part of ship structure. The buckling modes of stiffened panels obtained by the first-order buckling analysis are mainly local deformation, and the initial imperfection introduced according to the first-order buckling mode can not reflect the overall imperfection of the ship deck structure very well. In order to further promote the application of the advanced analytical method in ships and offshore structures, this paper proposes an initial imperfection introduction method of instability mode which can reflect the overall imperfection distribution of the whole deck, cabin and even the whole ship structure. The finite element software Ansys is used to analyze the ultimate strength of stiffened panels with different initial imperfection, and the results are compared with the test results, which verifies the feasibility and effectiveness of introducing the initial imperfection of instability mode in the calculation of ultimate strength of stiffened panels. The finite element results show that compared with the first-order buckling initial imperfection, the ultimate strength of the stiffened panels with initial imperfection of instability mode is lower, which can better ensure the safety of the structure. The ultimate strength of 31 stiffened panels with single parameter variable is analyzed by considering the initial imperfection of instability mode. The results show that increasing the height of stiffeners within a reasonable range is the most effective way to improve the ultimate strength of stiffened panels.
2023,45(18): 13-18 收稿日期:2022-11-30
DOI:10.3404/j.issn.1672-7649.2023.18.003
分类号:U661.43
作者简介:李淇雯(1999-),女,硕士研究生,研究方向为船舶结构强度
参考文献:
[1] 中国船级社. 钢质海船入级规范[S]. 2021.
[2] 钢结构设计标准: GB50017—2017[S]. 北京: 中国建筑工业出版社, 2017.
[3] 施兴华, 卞璇屹, 钱鹏, 等. 初始缺陷对加筋板结构极限强度的影响研究[J]. 舰船科学技术, 2017, 39(3): 29–35
SHI X H, BIAN X Y, QIAN P, et al. Effect of initial imperfections on the ultimate strength of stiffened panels[J]. Ship Science and Technology, 2017, 39(3): 29–35
[4] 张涛, 刘土光, 赵耀, 等. 初始缺陷加筋板的屈曲与后屈曲分析[J]. 船舶力学, 2003, 7(1): 79–83
ZHANG T, LIU T G, ZHAO Y. et al. Buckling and post-buckling of imperfect stiffened plates[J]. Journal of Ship Mechanics, 2003, 7(1): 79–83
[5] PAIK J K, LEE J M, KO M J. Ultimate shear strength of plate elements with pit corrosion wastage[J]. Thin-Walled Structures, 2004, 42(8): 1161–1176
[6] TANAKA Y, ENDO H. Ultimate strength of stiffened plates with their stiffeners locally buckled in compression[J]. Journal of the Society of Naval Architects of Japan, 1988, 164: 456–467
[7] SMITH CS. Compressive strength of welded steel ship grillages[J]. RINA Transactions, 1975, 118: 325–359
[8] 杨帆, 岳珠峰, 李磊. 基于弧长法的加筋板后屈曲特性分析及试验[J]. 应用力学学报, 2015, 32(1): 119–124
YANG F, YUE ZH F, LI L. Analysis and experiment of post-buckling characteristics of stiffened panel under compress load by arc-length method[J]. Chinese Journal of Applied Mechanics, 2015, 32(1): 119–124
[9] 刘春正, 吴梵, 牟金磊. 含初始缺陷加筋板的稳定性分析[J]. 舰船科学技术, 2017, 39(4): 40–44
LIU CH ZH, WU F, MOU J L. The buckling analysis of the stiffened plate with initial deflection[J]. Ship Science and Technology, 2017, 39(4): 40–44
[10] 梅佳雪, 杜尊峰, 朱海涛. 船体结构加筋板极限强度的影响因素[J]. 船舶工程, 2021, 43(9): 37–42
MEI J X, DU Z F, ZHU H T. Influencing factors of ultimate strength of stiffened plate of ship structure[J]. Ship Engineering, 2021, 43(9): 37–42
[11] 范峰, 曹正罡, 马会环, 等. 网壳结构弹塑性稳定性[M]. 北京: 科学出版社, 2015.
[12] 张明, 侯积英, 支旭东, 等. 初始几何挠度模式对单层球面网壳抗震性能的影响[J]. 振动与冲击, 2021, 40(5): 33–38
ZHANG M, HOU J Y, ZHI X D, et al. Effect of initial geometric imperfection modes on aseismic performance of single-layer spherical reticulated shell[J]. Journal of Vibration and Shock, 2021, 40(5): 33–38
[13] 张宜杰, 李淇雯, 邱国志, 等. 考虑失稳模态型初始缺陷的船体舱段极限强度分析[J]. 舰船科学技术, 2023, 45(10): 19–22.
[14] 张晓丹, 杨平. 加筋板在极限压力下的轴向强度研究[J]. 武汉理工大学学报, 2011, 35(2): 305–312
ZHANG X D, YANG P. Ultimate strength of stiffened plate under axial compression[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2011, 35(2): 305–312
[15] ZHANG SH M, KHAN IMTAZ. Buckling and ultimate capacity of plates and stiffened panels in axial compression[J]. Marine Structures, 2009, 22(4): 791–808
[16] ISSC. Report of specialist committee Ⅲ. 1-ultimate strength[S]. 2012.
[17] 单成巍. 循环载荷作用下船体结构的极限强度非线性有限元分析[D]. 武汉: 武汉理工大学, 2013.