阻力预测是船舶设计的重要环节。本文采用多种阻力预测方法对KCS船舶、KVLCC2船舶、Wigley船型以及NPL圆舭艇的阻力进行估算,验证多种阻力预测方法的计算精度和可靠性,探究各种阻力预测方法的适用范围。结果表明,基于回归分析方法计算常规排水型船舶阻力和基于细长体方法计算瘦长船型和方尾船阻力的方案可行。船型特征是选择阻力预测方法的首要因素。细长体理论计算的自由面波形结果基本令人满意。本文对船舶阻力估算方法的研究起到一定的借鉴和参考作用,同时也提供了一系列阻力计算的验证算例。
Resistance prediction is an important part of ship design. In this paper, the resistance of KCS ship, KVLCC2 ship, Wigley ship type and NPL round bilge boat is estimated by various resistance prediction methods, which verifies the calculation accuracy and reliability of various resistance prediction methods, and explores the applicable scope of various resistance prediction methods. The results show that it is feasible to calculate the resistance of conventional displacement ship based on regression analysis method and to calculate the resistance of slender ship and square stern ship based on slender body method. Ship type characteristics are the primary factor in selecting resistance prediction methods. The free surface waveforms of slender body are basically satisfactory. This paper provides some reference for the research of ship resistance estimation method, and provides a series of verification examples of resistance calculation.
2023,45(18): 25-31 收稿日期:2022-08-30
DOI:10.3404/j.issn.1672-7649.2023.18.005
分类号:U671.99
基金项目:广东海洋大学科研启动经费资助项目(060302072101);湛江市科技局青年海洋人才资助项目(2021E05011);国家自然科学基金面上项目(62272109)
作者简介:张大朋(1987-),男,博士,研究方向为船舶与海洋结构物动态响应
参考文献:
[1] 罗良. 基于一维方法和三维方法的模型尺度及实船尺度船舶阻力预报[J]. 舰船科学技术, 2022, 44(6): 18–21
LUO Liang. Model size and full-scale ship resistance prediction based on one-dimensional and three-dimensional methods[J]. Ship Science and Technology,, 2022, 44(6): 18–21
[2] 贺妍. 基于CFD的穿浪双体船水动力性能分析[D]. 大连: 大连理工大学, 2021.
[3] 宋科委, 郭春雨, 孙聪, 等. 实尺度船舶阻力计算及尺度效应研究[J]. 华中科技大学学报(自然科学版), 2021, 49(6): 74–80
SONG Kewei, GUO Chunyu, SUN Cong, et al. Calculation of real scale ship resistance and research on scale effects[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(6): 74–80
[4] 邱鹏, 何钰璋, 李国诚. 船舶阻力数值计算研究[J]. 中国水运, 2021(1): 121–123
[5] 刘飞. 基于CFD方法的破损船舶阻力预报研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[6] 李浅洋, 胡义, 程洪凯. 基于VB. Net的船舶阻力预报集成化研究[J]. 船舶工程, 2019, 41(12): 58–63
[7] 黄丽, 张瑞. 基于CFD的船舶阻力数值模拟[J]. 广船科技, 2018, 38(4): 15–18
[8] 钟铮. 基于Web的船舶阻力教学网络信息远程监控系统设计[J]. 舰船科学技术, 2019, 41(4): 220–222
[9] 王楠, 周旭. 改进的Holtrop船舶阻力估算[J]. 船海工程, 2019, 48(4): 34–37
[10] 杨显原, 吴家鸣, 陈宇庆. 基于兴波干扰的三体船构型数字化优化方法[J]. 船舶工程, 2017, 39(S1): 53–57
[11] MICHELL J H. The wave-resistance of a ship[J]. Philosophical Magazine (Series 5), 1898, 272(45): 106–123
[12] COUSER P R, WELLICOME J F, MOLLAND A F. An Improved Method for the Theoretical Prediction of the Wave Resistance of Transom-Stern Hulls Using a Slender Body Approach[J]. International Shipbuilding Progress, 1998, 444(45): 331-349.
[13] LARSSON L, STERN F, BERTRAM V. Benchmarking of computational fluid dynamics for ship flows: the gothenburg 2000 workshop[J]. Journal of Ship Research, 2003, 47(1): 63–81
[14] KIM W J, VAN S H, KIM D H. Measurement of flows around modern commercial ship models[J]. Experiments in Fluids, 2001, 31(5): 567–578
[15] COUSER P R, WELLICOME J F, MOLLAND A F. An improved method for the theoretical prediction of the wave resistance of transom-stern hulls using a slender body approach[J]. International Shipbuilding Progress, 1998, 45(444): 331–349
[16] COUSER, PATRICK. An investigation into the performance of high-speed catamarans in calm water and waves[D]. University of Southampton, 1996.