导管桨结构与飞机薄壁结构类似,而国内不具备成熟的导管桨设计标准。针对某中型气垫船导管桨结构,分析传力路线,建立导管桨有限元模型,采用有限元方法开展了8种工况下的静力特性和稳定性分析,并且研究了不同蒙皮压力对部件应力水平的影响。结果表明:导管桨在各工况下应力集中区域均位于前拉杆及其接头的连接区域,不同蒙皮压力对该结构重要部件的应力影响较小;最大位移变形位于航左上舵承区域,可达7.123 mm;并且结构不会发生屈曲失稳。该研究结果得到了结构薄弱区域,可为后续结构优化提供参考。
The structure of the ducted propeller is similar to the thin-walled structure of the aircraft, but there is no mature design standard for the ducted propeller in China. For the ducted propeller structure of a medium-sized hovercraft, the force transmission route is analyzed, the finite element model of the ducted propeller is established, the static characteristics and stability analysis under eight working conditions are carried out by using the finite element method. Furthermore, the effect of different skin pressures on the stress level of the component is studied. The results show that the stress concentration area of the ducted propeller is located in the connection area of the front tension bar and its joint, and different skin pressures have little effect on the stress of the important parts of the structure; the maximum displacement is located in the left upper rudder bearing area, up to 7.123 mm, the buckling instability of the ducted propeller will not occur. The analysis of the research results has obtained the weak area of the structure, which can further provide reference for the follow-up structural optimization.
2023,45(18): 32-37 收稿日期:2022-09-28
DOI:10.3404/j.issn.1672-7649.2023.18.006
分类号:U663
基金项目:国家自然科学基金资助项目(52075232);江苏省自然科学基金资助项目(BK20201112);江苏高校优势学科建设工程资助项目(PAPD)
作者简介:熊宇超(1996-),男,硕士,研究方向为结构设计与分析
参考文献:
[1] ALLISON J, FORSTELL B, LAVIS D, et al. The influence of new technology on the design and manufacture of high speed craft[C]//RINA International Conference on High Speed Craft. London, U. K., 2004: 131–142.
[2] BI N, KIMMEL K, HAAS D. Performance investigation of ducted aerodynamic propulsors[C]//First International Symposium on Marine Propulsors. Trondheim, Norway, 2009.
[3] ROSENFELD N, BI N, HAAS D. Analytical model of blockage effects on ducted air propulsor systems[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee, USA: AIAA, 2012-0865: 1–16.
[4] HAASD, SILBERG E, KIMMEL K. The Navy’s aerodynamics laboratory-100 years of experimental aerodynamics from A-1 to DDG-1000[C]//52nd Aerospace Sciences Meeting. National Harbor, Maryland, USA: AIAA, 2014-0283: 1–21.
[5] 陈海涛, 张平. 气垫船导管组合结构设计初探[J]. 船舶, 2015, 26(1): 59–63
CHEN H T, ZHANG P. Preliminary analysis of composite structural design for duct on air cushion vehicles[J]. Ship & Boat, 2015, 26(1): 59–63
[6] 张宗科. 英国全垫升气垫船的技术发展与性能分析[J]. 船舶, 2018, 29(6): 9–22
ZHANG Z K. Technology development and performance analysis of hovercraft in UK[J]. Ship & Boat, 2018, 29(6): 9–22
[7] 恽良. 气垫船原理与设计[M]. 北京: 国防工业出版社, 1990.
[8] 马涛, 邬成杰. 气垫船总体性能与围裙气垫系统流体动力设计[M]. 北京: 国防工业出版社, 2012.
[9] 袁知星, 陈上校, 马涛. 导管空气螺旋桨的设计方法[J]. 船舶, 2008, 19(2): 27–30
YUAN Z X, CHEN S X, MA T. A design method for air ducted propeller[J]. Ship & Boat, 2008, 19(2): 27–30
[10] 张平, 陈海涛, 鲍文倩, 等. 中型气垫船导管内蒙皮脉动载荷预报方法研究[J]. 船舶工程, 2015, 37(4): 29–32
ZHANG P, CHEN H T, BAO W Q, et al. Forecasting method of fluctuating pressure of typical propeller duct’s inner surface in medium-size air cushion vehicle[J]. Ship Engineering, 2015, 37(4): 29–32
[11] 李中扬. 导管桨推力与支架应力相关性分析及支架动态应力测试方法研究[D]. 上海: 上海交通大学, 2009.
[12] 黄娅琳. 大型气垫船复合材料导管支撑结构设计研究[D]. 长沙: 国防科学技术大学, 2016.