为改善潜艇泵喷推进器转子盘面流场的不均匀性,降低潜艇噪声,提高潜艇的隐身性能。设计一种取消尾舵的潜艇矢量泵喷推进器,基于RANS方法对潜艇矢量泵喷推进器水动力性能进行数值计算,对潜艇尾流场特性、矢量泵喷推进器的推进性能和操纵性能进行研究,并与常规泵喷推进器作比较。计算结果显示,潜艇采用矢量泵喷推进器可取消尾舵的布置,降低转子盘面流场不均匀性,整体总阻力降低,推进器收到功率减小,推进效率提高19.9%;在0°~30°操舵舵角范围内,矢量推进器最大偏转力矩大于常规泵喷推进器+尾舵的偏转力矩。在相同的操舵角度下,矢量泵喷推进器偏转力矩大于常规泵喷推进器,说明潜艇安装矢量泵喷推进器可满足航行机动性的要求。这项研究为降低潜艇桨盘面不均匀性,提高潜艇声隐性能提供了新的途径。
In order to ameliorate inhomogeneity of flow field on rotor disk, reduce the noise of submarine and improve the stealth performance of submarine. This work mainly designed a submarine vector pump-jet propulsion without tail rudders, nd the hydrodynamic performance of the submarine vector pump-jet propulsion has been numerically calculated based RANS, the characteristics of the submarine wake field, the propulsion performance, and the maneuverability of the vector pump-jet propulsion have been studied, than compared with the conventional pump-jet propulsion. The calculation results show that the use of vector pump-jet propulsion on submarines without tail rudders can reduce the inhomogeneity of flow field on rotor disk, overall total drag, thruster power received, and improve propulsion efficiency. In the range of 0°~30° steering rudder angle, the maximum deflection moment of the vector thruster is larger than that of the conventional pump-jet thruster + tail rudder. Under the same steering angle, the deflection moment of the vector pump-jet propulsion is larger than that of the conventional pump-jet propulsion, indicating that the submarine-mounted vector-pump-jet propulsion can meet the requirements of navigation maneuverability. This research provides a new way to reduce the non-uniformity of submarine propeller disk and improve the acoustic concealment performance of submarines.
2023,45(18): 38-44 收稿日期:2022-08-20
DOI:10.3404/j.issn.1672-7649.2023.18.007
分类号:U661.1
作者简介:叶金铭(1978-),男,副教授。研究方向为舰船流体动力性能
参考文献:
[1] 王聘. 无人自主水下航行器矢量推进器研究[D]. 西安: 西北工业大学, 2006.
[2] 张腾. 螺旋混流式潜航器泵喷矢量推进的俯仰动力学特性[D]. 兰州: 兰州理工大学, 2021.
[3] NAWROT M T. Conceptual design for a thrust-vectoring tailcone for underwater robotics[D]. US: Massachusetts Institute of Technology, 2012.
[4] Monterey Bay Aquarium Research Institute. 蓝鳍金枪鱼设计技术 [EB/OL]. [2014-04-01] US: Bluefinrobotics. 5
[5] 潘存云, 温熙森. 基于渐开线球齿轮的机器人柔性手腕结构与运动分析机[J]. 机械工程学报, 2005, 41(7): 141–146
PAN C Y, WEN X S. Robot flexible wrist structure and motion analysis machine based on involute ball gear[J]. Chinese Journal of Mechanical Engineering, 2005, 41(7): 141–146
[6] 方世鹏. 水下矢量推进螺旋奖装置设计与研究[D]. 长沙: 国防科学技术大学, 2008.
[7] 高富东. 复杂海况下新型水下航行器设计与关键技术研究[D]. 长沙: 国防科学技术大学, 2012.
[8] GAO FD, PAN CY, HAN YY. Design and analysis of a new AUV’s sliding control system based on dynamic boundary layer[J]. Chinese Journal of Mechanical Engineering, 2013, 26(1): 35–45.
[9] 郭隆华. BAE 系统公司推出“泰利斯曼”近海 UUV 进行近距离侦察[J]. 舰船科学技术, 2009, 31(7): 98.
GUO L H. BAE Systems Corporation launched the Talesman offshore UUV for close-range reconnaissance [J]. Ship Science and Technology. 2009, 31(7): 98.
[10] 耿令波, 胡志强, 林扬, 等. 基于横向二次射流的水下推力矢量方法[J]. 航空动力学报, 2017, 32(8): 1922–1932
GENG L B, HU Z Q, LIN Y, et al. Underwater thrust vectoring method based on cross second flow[J]. Journal of Aerodynamics, 2017, 32(8): 1922–1932
[11] 张帅. 肖晶晶. 水下矢量推进器研究综述[J]. 舰船科学技术, 2019(7): 41.
ZHANG S. XIAO J J. Review of underwater vector propulsion devices [J]. Ship Science and Technology, 2019(7): 41.