为减少天线部件对自主水下机器人造成的额外航行阻力,解决现有升降、折叠天线机构不适用于微型自主水下机器人的问题,设计一种适用于微型自主水下机器人的折叠天线。通过CFD仿真对比了天线机构升起或折叠状态下微型自主水下机器人的航行阻力,结果表明,折叠天线折叠后可减少不小于34.26%的航行阻力,验证了折叠天线对于微型自主水下机器人减小水下航行阻力的有效性。通过对折叠天线机构的运动学与动力学仿真,可知天线机构升起过程中所需最大驱动力矩为0.51 kg·cm,该数值小于天线机构选用驱动舵机的额定输出扭矩,验证了设计方案的可行性。最后,通过微型自主水下机器人样机湖上试验,验证了折叠天线机构处于升起状态时接收WiFi、无线电和GPS信号的稳定性,天线机构折叠时微型自主水下机器人能够实现水下定向、定深航行功能。
In order to reduce the additional navigation resistance caused by the antenna components to the Autonomous Underwater Vehicles and to solve the problem that the traditional lifting and folding antenna mechanism is not suitable for the micro Autonomous Underwater Vehicle, a folding antenna suitable for the micro AUV was designed. With CFD simulation, the navigation resistance of the micro autonomous underwater vehicle was compared under the conditions that the antenna mechanism is raised or folded. The result showed that the navigation resistance of the folded antenna can be reduced by more than 34.26%.It verified the effectiveness of the folded antenna for reducing the navigation resistance. With the kinematics and dynamics simulation of the folded antenna mechanism, the maximum driving torque required by the antenna mechanism in the lifting process is 0.51kg.cm, which is less than the rated output torque of the steering gear selected. It verified the feasibility of the design. Finally, the stability of receiving WiFi, radio and GPS signals when the antenna is raised was verified by the lake test of the micro AUV prototype. It was also verified that the micro AUV can accomplish underwater orientation and depth navigation when the antenna mechanism was folded.
2023,45(18): 92-98 收稿日期:2022-09-02
DOI:10.3404/j.issn.1672-7649.2023.18.015
分类号:TP242
作者简介:韩涛(1996-),男,硕士研究生,研究方向为多关节水下机器人结构设计
参考文献:
[1] ALAAELDEEN M, DUAN W Y. Overview on the development of autonomous underwater vehicles(AUVs)[J]. Journal of Ship Mechanics, 2016.
[2] 郑志航, 严天宏, 何波, 等. 一种长航程AUV折叠天线机构与密封设计[J]. 舰船科学技术, 2021, 43(9): 4.
ZHENG Z H, YAN T H, HE B, et al. The mechanism and sealing design of a long-range AUV folding antenna[J]. Ship Science and Technology, 2021, 43(9): 4.
[3] MA Yuanliang, ZHANG Qunfei, ZHANG Honglei. 6G: Ubiquitously extending to the vast underwater world of the oceans[J]. Engineering, 2022, 8(1): 12–17
[4] 严天宏, 申洪彬, 何波, 等. 自主水下航行器折叠天线设计[J]. 机械设计与制造, 2021.
YAN T H, SHEN H B, HE B, et al. Design of folding antenna for autonomous underwater vehicle[J]. Machinery Design & Manufacture, 2021.
[5] 宫颖博, 严天宏, 何波. 一种自主水下航行器用可伸缩天线装置[P]. CN111478012A, 2020.
[6] 秦玉峰. 小型长航程AUV结构设计及动力学分析[D]. 北京: 国家海洋技术中心, 2017.
[7] 詹成胜, 刘祖源, 程细得. 潜艇水动力系数数值计算[J]. 船海工程, 2008(3): 1–4
ZHAN D S, LIU Z Y, CHENG X D. Numerical calculation of the submarine's hydrodynamic coefficients[J]. Ship & Ocean Engineering, 2008(3): 1–4
[8] 高婷, 庞永杰, 王亚兴, 等. 水下航行器水动力系数计算方法[J]. 哈尔滨工程大学学报, 2019, 40(1): 174–180
GAO T, PANG Y G, WANG Y X, et al. Calculation method of hydrodynamic coefficients for underwater vehicles[J]. Journal of Harbin Engineering University, 2019, 40(1): 174–180
[9] 张铁栋. 潜水器设计原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011: 117–120.
[10] 孙恒, 陈作模, 葛文杰, 等. 机械原理(第八版)[M]. 北京: 高等教育出版社, 2013: 124–150.