为了抑制船舶柴油机的进排气以及空调通风管路内的噪声,亥姆霍兹共振器通常被用作消声器来耗散声波。声学数值模型基于有限元方法,运用COMSOL5.3软件,对平行耦合型亥姆霍兹共振器在频域内建立模型,求解线性化的Navier-Stokes方程。通过仿真分析共振器侧壁穿孔率、孔的数量以及来流马赫数的变化对共振频率、传递损失以及吸声性能的影响。结果表明:穿孔率由25%增至50%时,能够拓宽消声频带和提高吸声性能;在固定穿孔率情况下,侧壁孔数的增加有益于提升共振器的吸声性能,特别是高来流马赫数工况(Ma≥0.07)比较明显。此外随着来流马赫数的增加,由于2个平行耦合的共振腔之间的共振作用,使得模型能产生3个及以上的共振频率。
In order to suppress the noise in the intake and exhaust of the diesel engine and in the air-conditioning ventilation pipeline on the ship, Helmholtz resonators are commonly used as mufflers to dissipate acoustic waves. It studies the parallel-coupled Helmholtz resonator commonly used in engineering. Based on the finite element method, an acoustic numerical model was established in the frequency-domain by using COMSOL5.3 software, which solves the linearized Navier-Stokes equations. The simulation analyzed the effects of the resonator in terms of the number of holes, perforation ratio and inflow Mach number on the resonance frequency, transmission loss, and sound absorption performance. It is shown that as the perforation rate is increased from 25% to 50%, it can widen the noise reduction frequency band and improve the sound absorption performance. In the case of a fixed perforation ratio, an increase in the number of sidewall holes is beneficial to improve the sound absorption performance of the resonator, especially in the case of high Mach numbers(Ma≥0.07). In addition, the model can have three or more resonant frequencies due to the resonance effect between two parallel coupled resonant cavities.
2023,45(18): 109-114 收稿日期:2022-09-30
DOI:10.3404/j.issn.1672-7649.2023.18.018
分类号:TK05;TB535+.3
作者简介:潘伟宸(1995-),男,硕士,助理工程师,研究方向为振动噪声与控制
参考文献:
[1] 黄伟稀, 陈文华, 何涛, 等. 船用微穿孔消声器设计计算方法[J]. 舰船科学技术, 2022, 44(2): 91–97
[2] 王法林. 船舶发动机排气消声器强度性能测试研究[J]. 舰船科学技术, 2021, 43(2): 121–123
[3] 袁苏伟, 朱海潮, 侯九霄. 弹性背腔穿孔管水消声器有限元分析[J]. 舰船科学技术, 2021, 43(3): 76–79
[4] 张则刚, 高丽, 孙海滨, 等. 往复式压缩机吸气消声器的设计与优化[J]. 噪声与振动控制, 2022, 42(2): 231–235
[5] 苏胜利, 张苗, 曹为午. 亥姆霍兹共振消声器的声学改进[J]. 舰船科学技术, 2014, 36(11): 128–131
[6] 吴维维, 潘伟宸, 赵鹏瑜, 等. 切向流条件下赫姆霍兹共振器低频噪声传递损失的数值分析[J]. 舰船科学技术, 2022, 44(7): 62–67
[7] 王正敏, 饶伟, 李德玉. 封闭腔体噪声控制中亥姆霍兹共振器的优化设计方法[J]. 声学学报, 2019, 44(5): 834–842
[8] 甘振鹏, 杨东. 带冷却气流的亥姆霍兹共振器的声类比模型[J]. 力学学报, 2022, 54(3): 577–587
[9] 陆维涛, 郭旭红. 双腔内插管扩张式抗性消声器的计算[J]. 机械制造, 2019, 57(3): 34–36
[10] DAN Z, MORGANS A S. Tuned passive control of combustion instabilities using multiple Helmholtz resonators[J]. Journal of Sound and Vibration, 2009, 320(4–5): 744–757
[11] GRIFFIN S, LANE S A, HUYBRECHTS S. Coupled Helmholtz resonators for acoustic attenuation[J]. Journal of Vibration and Acoustics, 2001, 123(11): 11–17
[12] TANG S K. On Helmholtz resonators with tapered necks[J]. Journal of Sound and Vibration, 2005, 279(3–5): 1085–1096
[13] DAN Z. Transmission loss analysis of a parallel-coupled helmholtz resonator network[J]. AIAA Journal, 2012, 50(6): 1339–1346
[14] YU H R, WEN G L, CHEN Z F, et al. Analysis of acoustical characteristics of coupled intake resonators[J]. Constriction Engineering Design, 2012, 19(4): 289–293
[15] MATTTHEW F C, SCOTT D S. Modeling of acoustic resonators and resonator arrays for use in passive noise control[J]. The Journal of the Acoustical Society of America, 2015, 137(4): 2340
[16] 陈龙虎. 复合式穿孔管消声器及其噪声控制研究[D] . 太原: 中北大学, 2021.
[17] JI C Z, DAN Z, YIN M W, et al. Experimental and numerical investigation of geometric shape effect of coupled Helmholtz resonator on its aeroacoustic damping performance [C]// 22nd AIAA/CEAS Aeroacoustics Conferences. France: AIAA/CEAS, 2016, 5.