为了解决船舶与海洋大数据算法模型资源共享问题,本文构建船舶与海洋大数据算法模型资源共享系统,系统具备研制、优化、集成船舶行业和海洋领域专用算法模型资源能力,以源代码或二进制库方式对船舶行业和海洋领域专用算法模型资源进行集成,通过Restful API接口方式为外部授权应用系统提供模型算法计算服务。性能测试结果表明,船舶与海洋大数据算法模型资源共享系统具备多用户并发算法模型资源共享服务能力和性能可扩展性。
In order to solve the problem of resource sharing of ship and ocean big data algorithm model, this paper constructs a resource sharing system of ship and ocean big data algorithm model. This system has the ability to develop, optimize, and integrate resources of ship industry and ocean domain specific algorithm model. It integrates ship industry and ocean domain specific algorithm model resources in the form of source code or binary library, and provides algorithm model computing services for external authorized application systems through Restful API interface. The performance test results indicate that the ship and ocean big data algorithm model resource sharing system has the ability to provide multi user concurrent services and scalability.
2023,45(18): 143-146 收稿日期:2023-06-30
DOI:10.3404/j.issn.1672-7649.2023.18.025
分类号:TP391
作者简介:石刘(1982-),男,高级工程师,研究方向为船舶与海洋电子信息体系、系统与算法
参考文献:
[1] 洪阳, 侯雪燕. 海洋大数据平台建设及应用[J]. 卫星应用, 2016(6): 26-30.
[2] 杨镇宇, 石刘, 高峰, 等. 海洋大数据智能分析系统[J]. 舰船科学技术, 2021, 43(S1): 92-100.
[3] 刘振宇. 利用Nginx实现网站负载均衡[J]. 中国管理信息化, 2012, 15(16): 96-96.
[4] NECHITAYLO A A, VASILCHUK O I, GNUTOVA A A. Description and formation of the database perimeter for systematisation and storage of multi-structured data[J]. Information Technology and Nanotechnology, 2019.
[5] HUANG D, DU Y, HE Q, et al. Migration Algorithm for Big Marine Data in Hybrid Cloud Storage[J]. Journal of Computer Research and Development, 2014.
[6] 夏俊鸾, 邵赛赛. Spark Streaming: 大规模流式数据处理的新贵[J]. 程序员, 2014(2): 44-47.
[7] 侯雪燕, 郭振华, 崔要奎, 等. 海洋大数据: 内涵、应用及平台建设[J]. 海洋通报, 2017, 36(4): 361-369.
[8] 何子明. 关于海洋大数据平台数据共享技术研究[J]. 计算机产品与流通, 2020(2): 150-150.
[9] 种劲松, 朱敏慧. SAR图像舰船及其尾迹检测研究综述[J]. 电子学报, 2003.9, 31(9): 1356-60.
[10] 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4): 1201-1227.
[11] 王瑶, 胥辉旗, 姜义, 等. 基于深度学习的舰船目标检测技术发展综述[J]. 飞航导弹, 2021.
[12] 袁明新, 张丽民, 朱友帅, 等. 基于深度学习方法的海上舰船目标检测[J]. 舰船科学技术, 2019, 41(1): 111-115+124.
[13] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]// In: Proc. of the Neural Information Processing Systems. 2015: 91-99.
[14] CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into High Quality Object Detection[C]// 2017.
[15] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[J]. IEEE, 2016.
[16] LIN TY, DOLLÁR P, Girshick R, et al. Feature pyramid networks for object detection[C]// In: Proc. of the Computer Vision and Pattern Recognition. 2017: 2117-2125.