船舶在航行过程中常受到动力载荷的作用,因此有必要对船体结构的动力极限强度预测方法进行研究。本文首先通过与现有试验结果对比,验证了本文有限元计算方法的正确性。随后通过数值计算,得到828组几何与材料参数不同的船体加筋板模型在不同加载速度下的动力极限强度。而后,以板柔度系数、加筋梁柱柔度系数、材料屈服强度为主要输入参数,构建3层BP神经网络,预测加筋板动力极限强度。所得神经网络均方差及相关系数分别达到0.00047与0.99。将训练的神经网络应用于实船加筋板,与有限元计算结果对比,最大误差仅6.4%,证明该BP神经网络能较好预测实船结构动力极限强度。
Ships are often subjected to dynamic loads during voyage, so it is necessary to study the prediction method of dynamic ultimate strength of ship structures. In this paper, the numerical method is first verified by comparing with the existing experimental results. Then, the dynamic ultimate strength of 828 stiffened panels with different geometric and material parameters at different loading speeds is obtained by FEM. Then, a three-layer BP neural network was constructed to predict the ultimate dynamic strength of the stiffened panels by taking the plate slenderness ratio, column slenderness ratio of stiffener and the material yield strength as the main input parameters. The mean square error and correlation coefficient of the trained neural network are 0.00047 and 0.99, respectively. The trained BP neural network is applied to real ship plates and the maximum error is 6.4%, indicates this method can predict the dynamic ultimate strength of the real ship structure.
2023,45(19): 1-8 收稿日期:2022-09-06
DOI:10.3404/j.issn.1672-7649.2023.19.001
分类号:U661.4
基金项目:国家自然科学基金资助项目(51809168,51979163);财政部、教育部重大专项(201335)
作者简介:熊宇飞(1994-),男,博士研究生,研究方向为船体结构的屈曲与极限强度
参考文献:
[1] TEKGOZ M, GARBATOV Y, SOARES GC. Strength assessment of an intact and damaged container ship subjected to asymmetrical bending loadings[J]. Marine Structares, 2018, 58: 172–198
[2] SMITH CS. Influence of local compressive failure on ultimate longitudinal strength of a ship’s hull [J]. PRADS, 1977: 73–79.
[3] UEDA Y, RASHED SMH. The idealized structural unit method and its application to deep girder structures[J]. Computers & Structures, 1984, 18: 277–293
[4] TEIXEIRA AP, SOARES GC. Strength of compressed rectangular plates subjected to lateral pressure[J]. Joumal of Constructional Steel Reserach, 2001, 57: 491–516
[5] PAIK JK, SEO JK. Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part I: Plate elements[J]. Thin-Walled Struct, 2009, 47(8): 1008–1017
[6] PAIK JK, SEO JK. Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part II: stiffened panels[J]. Thin-Walled Struct, 2009, 47(8): 998–1007
[7] TANAKA S, YANAGIHARA D, YASUOKA A, et al. Evaluation of ultimate strength of stiffened panels under longitudinal thrust[J]. Marine Structares, 2014, 36: 21–50
[8] CHEONG HK, HAO H, CUI S. Experimental investigation of dynamic post-buckling characteristics of rectangular plates under fluid-solid slamming[J]. Engineering strures, 2000, 22(8): 947–960
[9] PAIK JK, THAYAYAMBALLI AK. An experimental investigation on the dynamic ultimate compressive strength of ship plating[J]. International Journal of Impact Engineering, 2003, 28(7): 803–811
[10] YANG B, WANG DY. Dynamic buckling of stiffened plates with elastically restrained edges under in-plane impact loading[J]. Thin-Walled Struct, 2016, 107: 427–442
[11] YANG B, WANG DY. Buckling strength of rectangular plates with elastically restrained edges subjected to in-plane impact loading[J]. Proceedings International Journal of Meachanical Sciences, 2017, 231(20): 3743–3752
[12] YANG B, WANG DY. Dynamic ultimate hull girder strength analysis on container ship under impact bending moments[J]. International Journal of Offshore and Polar Engineering, 2018, 28(1): 105–111
[13] AO L, WANG DY, WU JM. A modified formula for predicting the ultimate strength of stiffened panels under longitudinal compression[J]. International Journal of Offshore and Polar Engineering, 2019, 29(2): 228–236
[14] YANG B, SOARES CG, WANG DY. An empirical formulation for predicting the dynamic ultimate strength of rectangular plates under in-plane compressive loading[J]. International Journal of Meachanical Sciences, 2018, 141: 213–222
[15] 王仁华, 赵沙沙. 随机点蚀损伤钢板的极限强度预测[J]. 工程力学, 2018, 35(12): 248–256
WANG RH, ZHAO SS. Ultimate strength prediction of steel plate with random pitting corrosion damage[J]. Engineering Mechanics, 2018, 35(12): 248–256
[16] LIU B, VILLAVICENCIO R, SOARES GC. On the failure criterion of aluminum and steel plates subjected to low-velocity impact by a spherical indenter[J]. International Journal of Meachanical Sciences, 2014, 80: 1–15
[17] PAIK JK. Practical techniques for finite element modeling to simulate structural crashworthiness in ship collisions and grounding (Part I: theory)[J]. Ships Offshore Struct, 2007, 2(1): 69–80
[18] ZHANG S, KHAN I. Buckling and ultimate capability of plates and stiffened panels in axial compression[J]. Marine Structures, 2009, 22(4): 791–808