为了评估舰船结构在水下多次爆炸冲击下抗爆抗冲击性能,采用Abaqus非线性有限元软件建立了固支背空钢板结构水下爆炸冲击数值模型,数值计算结果与文献实验结果吻合较好,验证了水下爆炸声-固耦合方法的可靠性。在此基础上,提出了多次水下爆炸冲击声-固耦合数值模拟方法,研究了多次水下爆炸冲击下典型背空加筋板损伤累积特性与损伤模式演化规律,分析了冲击因子对结构损伤特性的影响。结果表明,多次水下爆炸冲击作用下背空加筋板动态变形与损伤逐渐累积,可能发生塑性大变形、边界拉伸撕裂以及整体失效破坏等损伤模式演化。当冲击因子小于某一阈值时,背空加筋板多次水下爆炸冲击下塑性变形趋于稳定,出现伪安定现象。研究结果可为舰船结构抗爆抗冲击设计提供参考。
In order to evaluate the anti-explosion performance of ship structures subjected to multiple underwater explosions, a numerical model of typical air-backed structure subjected to underwater explosion is established by using the Abaqus/Explicit software. The numerical calculated results are in good agreement with experimental results in the literature. On this basis, an acoustic-structure coupling numerical simulation modeling method of ship structure subjected to multiple underwater explosions is proposed, and the damage accumulation characteristics of air-backed stiffened plate subjected to multiple underwater explosions are investigated. The damage evolution and accumulation process of stiffened plate is obtained. In addition, the influence of shock factor on damage accumulation is further performed. Results show that with the increase of shock factor, the damage of stiffened plate subjected to multiple underwater explosions accumulates gradually, and the evolution of damage modes such as local deformation stage, boundary tear damage stage and structure integral failure may occur. The plastic deformation of air-backed stiffened plate subjected to multiple underwater explosions tend to a stable value and pseudo shakedown phenomenon occurs when the impact factor is less than a shock factor threshold. The research results can provide a reference for anti-blast and anti-impact design of typical air-backed ship structures.
2023,45(19): 9-16 收稿日期:2022-10-07
DOI:10.3404/j.issn.1672-7649.2023.19.002
分类号:U663
基金项目:国家自然科学基金资助项目(11972269);武汉理工大学三亚科教创新园开放基金资助项目(2021KF0029)
作者简介:黄鑫华(1996-),男,硕士研究生,研究方向为舰船结构安全与冲击防护
参考文献:
[1] 陈永念. 舰船水下爆炸数值仿真及抗爆结构研究[D]. 上海: 上海交通大学, 2008.
[2] 王树乐, 宗智, 陈高杰, 等. 基于高性能计算的水下爆炸数值仿真[J]. 舰船科学技术, 2012, 34(9): 27–31
WANG S Y, ZONG Z, CHEN G J, et al. Numerical simulation of underwater explosion based on high performance computing[J]. Ship Science and Technology, 2012, 34(9): 27–31
[3] 梅志远, 朱锡, 刘润泉. 船用加筋板架爆炸载荷下动态响应数值分析[J]. 爆炸与冲击, 2004(1): 80–84
MEI Z Y, ZHU X, LIU R Q. Dynamic response researches of ship' s stiffened plate structure under explosive load[J]. Explosion and Shock Waves, 2004(1): 80–84
[4] RUDRAPATNA N S, VAZIRI R, OLSON M D. Deformation and failure of blast-loaded stiffened plates[J]. International Journal of Impact Engineering, 2000, 24(5): 457–474
[5] JEN C Y, TAI Y S. Deformation behavior of a stiffened panel subjected to underwater shock loading using the non-linear finite element method[J]. Materials and Design, 2010, 31(1): 325–335
[6] 牟金磊, 朱锡, 张振华, 等. 水下爆炸载荷作用下加筋板变形及开裂试验研究[J]. 振动与冲击, 2008, 27(1): 57–60
MU J L, ZHU X, ZHANG Z H, et al. Experimental study on deformation and rupture of stiffened plates subjected to underwater shock[J]. Journal of Vibration and Shock, 2008, 27(1): 57–60
[7] 朱锡, 牟金磊, 王恒, 等. 水下爆炸载荷作用下加筋板的毁伤模式[J]. 爆炸与冲击, 2010, 30(3): 225–231
ZHU X, MU J L, WANG H, et al. Damage modes of stiffened plates subjected to underwater explosion load[J]. Explosion and Shock Waves, 2010, 30(3): 225–231
[8] ZONG Z, ZHAO Y, LI H. A numerical study of whole ship structural damage resulting from close-in underwater explosion shock[J]. Marine Structures, 2013, 31: 24–43
[9] 刘昆, 包杰, 王自力. 船用夹层板系统水下防护性能数值仿真分析[J]. 船舶力学, 2015, 19(8): 982–993
LIU K, BAO J, WANG Z L, et al. Numerical simulation analysis on protective performance of sandwich plate system[J]. Journal of Ship Mechanics, 2015, 19(8): 982–993
[10] 姚熊亮, 张阿漫, 许维军. 声-固耦合方法在舰船水下爆炸中的应用[J]. 哈尔滨工程大学学报, 2005(6): 707–712
YAO X L, ZHANG A M, XU W J. Application of coupled acoustic-structural analysis to warship underwater explosion[J]. Journal of Harbin Engineering University, 2005(6): 707–712
[11] DEY S, BØRVIK T, HOPPERSTAD O S, et al. On the influence of constitutive relation in projectile impact of steel plates[J]. International Journal of Impact Engineering, 2007, 34(3): 464–486
[12] ZAMYSHLVAE B V, YAKOVLEV Y S. Dynamic loads in underwater explosion[R]. Washington: Naval Intelligence Support Center Washington DC Translation DIV, 1973.
[13] O’Hara G J, CUNNIFF P F. Scaling for shock response of equipment in different submarines[J]. Shock and Vibration, 1993, 1(2): 161–170
[14] RAMAJEVATHILAGAM K, VENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock[J]. International Journal of Impact Engineering, 2004, 30(6): 699–719