以某导管架架腿在受台风影响下与运维船发生碰撞凹陷为基础,根据碰撞产生的实际凹陷尺寸,建立导管架架腿凹陷模型,采用Ansys软件研究碰撞凹陷对圆管屈曲承载能力及疲劳强度的影响。结果表明:在轴向荷载作用下,碰撞凹陷后圆管临界屈曲承载能力降低了45.87%。在临界屈曲载荷作用下,完整圆管径向位移沿圆管径向向外鼓曲,但凹陷圆管径向位移呈现局部向内凹陷和局部向外鼓曲的现象。碰撞凹陷后,凹陷圆管疲劳损伤值局部区域呈增加的趋势,疲劳损失最大值区域发生在凹陷中间凹痕的C点和D点区域。
Basing on the jacket leg which has been collision depression under the influence of a typhoon in offshore wind part.Bulid the model of jacket leg,according to worker's field measurment which measured the length,the width and the depth of the jacket leg collision depression, aslo, considering the actual cosllision depression picture. based on the Newton-Simpson method, the impact of the collision depression on the buckling bearing capacity and fatigue strength of the circular tube was studied by using Ansys software.The results show that the critical buckling bearing capacity of the circular tube decreases by 45.87% after considering the collision depression. Under the critical buckling load, the displacement of the complete circular tube increases outward along the radial direction of the circular tube, but the local area of the displacement of the depressed circular tube is inward along the radial direction of the circular tube. After the collision depression, the fatigue damage value of the depression circular tube increases as a whole, comparing with complete circular tube, and also,the maximum fatigue damage area is transferred to the depression area in the middle of the dent.
2023,45(19): 25-30 收稿日期:2022-08-30
DOI:10.3404/j.issn.1672-7649.2023.19.004
分类号:U69
作者简介:陈帮(1993-),男,硕士,工程师,研究方向为海工基础结构设计
参考文献:
[1] 王黎辉, 李其凡, 张建等. 轴压柱形壳非线性屈曲试验与理论研究[J]. 船舶力学, 2021, 25(5): 645–651.
WANG Li-hui, LI Qi-fan, ZHANG Jian et al. Experimental and theoretical study on nonlinear bucklingof axially compressed cylindrical shells[J]. Journal of Ship Mechanics, 2021, 25(5): 645–651.
[2] 陈斌斌. 圆环耐压壳屈曲特性及试验研究[D]. 镇江: 江苏科技大学, 2019.
[3] 武行, 赵海盛, 李昕等. 非对称局部壁厚减薄海底管道的屈曲分析[J]. 海洋工程, 2021, 39(3): 72–82.
WU Hang, ZHAO Haisheng, LI Xin. Buckling analysis of pipes with asymmetric local wall thinning[J]. The Ocean Engineering, 2021, 39(3): 72–82.
[4] 刘桢. 考虑碰撞凹陷的钛合金耐压壳屈曲研究[D]. 镇江: 江苏科技大学, 2020.
[5] 余建星, 薛陆丰, 余扬等. 动态加载模拟凹坑对管道模型压溃影响[J]. 天津大学学报, 2018, 51(7): 667–674.
YU Jianxing, XUE Lufeng, YU Yang et al. Influence of denting under dynamic loading on subsea pipeline buckling[J]. Journal of Tianjin University(Science and Technology), 2018, 51(7): 667–674.
[6] BARDI F C, Kyriakides. S. Plastic buckling of circular tubes under axial compression partⅠ: Experiments[J]. International Journal of Mechanical Sciences, 2006, 48(8): 830–841.
[7] BARDI F C, KYRIAKIDES S. Plastic buckling of circular tubes under axial compression part Ⅱ: Analysis[J]. International Journal of Mechanical Sciences, 2006, 48(8): 842–854.
[8] WANG Wei, QIU XinMing. An analytical study for global buckling of circular tubes under axial and oblique compressiong[J]. International Journal of Mechanical Sciences, 2017, 17: 120–129
[9] WANG Yujin, FAN Feng, LIN Shibin. Experimental investigation on the stability of aluminium alloy 6082 circular tubes in axial compression[J]. Thin-Walled Structures, 2015, 89: 54–66
[10] 郭伟国, 史飞飞, 刘风亮. 高强度船体结构钢DH36的动态力学性能研究[C]// 第九届全国冲击动力学学术会议论文集. 2009.
GUO Weiguo, SHI Feifei, LIU Fengliang. Investigation on Dynamic Mechanical Performances of DH36 High Strength Shiphull Steel[C]// The 9th National Conference on Impact Dynamics. 2009.
[11] SHI Gang, JIANG Xue, ZHOU Wenjing, et al. Experimental study on column buckling of 420 MPa high strength steel welded circular tubes[J]. Journal of Constructional Steel Research, 2014, 100: 71–81
[12] DNVGL-RP-C203Fatiguedesignofoffshoresteelstructures[S]. DNVGL. 2020.
[13] 孔杰灵. 导管架平台管状构件碰撞受损后的剩余强度研究[D]. 武汉: 武汉理工大学, 2019.