为船体入水受冲击研究提供有效手段,提出流固耦合分析下的船体高速入水冲击数值模拟方法。该方法使用ALE算法对船体高速入水冲击展开流固耦合分析,并将船体看作圆筒形,建立船体有限元数值模拟模型,通过设置船体高速入水条件后,利用流固耦合分析方法获得船体高速入水冲击数值模拟结果。实验结果表明,船体高速入水瞬间,会产生巨大的加速度并传递到船体结构上,在加速度冲击作用下,船体结构排开水面,水介质受到船体结构挤压水平面会上升并产生水花飞溅现象,并在船体结构入水后形成超空泡;船体结构接触到水面时,其承受的冲击荷载最大,加速度曲线呈直线上升趋势。
A numerical simulation method for high-speed underwater impact of ship hull under fluid structure coupling analysis is proposed, providing an effective means for studying the impact of ship hull entering water. This method uses the ALE algorithm to conduct fluid structure coupling analysis on the high-speed water inflow impact of the ship hull, and treats the ship hull as a cylindrical shape. A finite element numerical simulation model of the ship hull is established. After setting the high-speed water inflow conditions of the ship hull, the simulation results of the high-speed water inflow impact number of the ship hull are obtained through the fluid structure coupling analysis method. The experimental results show that at the moment when the ship enters the water at high speed, a huge acceleration is generated and transmitted to the ship structure. Under the impact of acceleration, the ship structure is discharged from the water surface, and the water medium is squeezed by the ship structure, causing the horizontal plane to rise and produce water splashes. After the ship structure enters the water, super cavitation is formed. When the hull structure comes into contact with the water surface, it bears the maximum impact load, and the acceleration curve shows a straight upward trend.
2023,45(19): 60-63 收稿日期:2023-03-26
DOI:10.3404/j.issn.1672-7649.2023.19.011
分类号:U441
作者简介:迟铁(1992-),男,博士,研究方向为船舶入水抨击问题
参考文献:
[1] 刘云龙, 王平平, 王诗平, 等. 水下爆炸作用下舰船冲击毁伤的瞬态流固耦合FSLAB软件数值模拟分析[J]. 中国舰船研究, 2022, 17(5): 228-240.
LIU Yun-long, WANG Ping-ping, WANG Shi-ping, et al. Numerical analysis of transient fluid-structure interaction of warship impact damage caused by underwater explosion using the FSLAB[J]. Chinese Journal of Ship Research, 2022, 17(5): 228-240.
[2] 王平平, 张阿漫, 彭玉祥, 等. 近场水下爆炸瞬态强非线性流固耦合无网格数值模拟研究[J]. 力学学报, 2022, 54(8): 2194-2209.
WANG Ping-ping, ZHANG A-man, PENG Yu-xiang, et al. Umerical simulation of transient strongly-nonlinearn flutd-structure interaction in near-field underwater explosion based on meshless meshless method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2194-2209.
[3] 李鸿, 李光磊, 刘志远, 等. 基于流固耦合的降载空化器高速入水数值研究[J]. 振动与冲击, 2021, 40(23): 254-259.
LI Hong, LI Guang-lei, LIU Zhi-yuan, et al. Numerical simulation of high-speed water entry of cavitator with load reduction device based on fluid-structure interaction[J]. Journal of Vibration and Shock, 2021, 40(23): 254-259.
[4] 范旭东, 漆超, 王旭, 等. 基于ALE方法的高速弹体入水冲击特性研究[J]. 江苏科技大学学报(自然科学版), 2022, 36(2): 7-14.
FAN Xu-dong, QI Chao, WANG Xu, et al. Research on water impact characteristics of high-speed projectiles based on ALE method[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2022, 36(2): 7-14.
[5] 郝常乐, 党建军, 陈长盛, 等. 基于双向流固耦合的超空泡射弹入水研究[J]. 力学学报, 2022, 54(3): 678-687.
HAO Chang-le, DANG Jian-jun, CHEN Chang-sheng, et al. Research on supercavitation projectile entering water based on bidirectional fluid solid coupling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 678-687.
[6] 王得辰, 张俊婷, 樊佳伟. 载瘤动脉双向流固耦合动力学数值模拟分析[J]. 中北大学学报(自然科学版), 2023, 44(1): 16-23.
WANG De-chen, HANG Jun-ting, FAN Jia-wei. Numerical Simulation on bidirectional fluid-structure interaction kinetics of the Parent Artery[J]. Journal of North University of China(Natural Science Edition), 2023, 44(1): 16-23.
[7] 肖睿, 魏继锋, 吉耿杰, 等. 前抛体对弹体入水载荷影响数值模拟研究[J]. 爆炸与冲击, 2023, 43(4): 64-77.