纯横移运动是一种特殊的操纵性指标,它可以判断船舶主推进器和侧推器的配合能否抵御环境影响。好的横移能力能降低船舶进出港口的时间,提高船舶停靠码头的作业效率。船厂需要在设计初期通过此指标判断和选定满足要求的侧推器功率。本文基于MMG建模方法建立风载荷下客滚船的纯横移运动数学模型,采用各推进器推力的百分比之和最大的方式进行推力配比,并依据测量高度对风速进行修正。与文献中的某客滚船的模型试验结果的对比验证较为吻合,证明了计算的有效性。最后对3艘客滚船进行了验证和预报,给出了合同设计阶段需满足纯横移运动指标的侧推器功率。
Crabbing is special ship maneuvering characteristics, it can determine whether a combination of main propellers and lateral thrusters resist environmental forces. A good crabbing ability can effectively reduce harbor time for ship and improve port operation efficiency. Ship yards need to estimate the power of thrusters at preliminary design stage. In this paper, crabbing mathematical model of ropax considering wind load based on MMG model is provided, the thrust allocation is determined by the maximum value of the sum of the percent thrust of each propeller and thruster, wind speed is modified based on measuring height. The calculation results and the model test results of a ropax in the literature are compared and verified to be consistent,proved to be validity. At last, three ropax are predicted, the power of thrusters based on crabbing ability in contract design stage is provided.
2023,45(19): 77-81 收稿日期:2022-07-01
DOI:10.3404/j.issn.1672-7649.2023.19.014
分类号:U661.33
作者简介:付翯翯(1991-),女,硕士,工程师,研究方向为船舶总体设计
参考文献:
[1] YOSHIMURA Y . Mathematical model for the manoeuvring ship motion in shallow water, 2nd report: mathematical model at slow forward speed [J]. Journal of the Kansai Society of Naval Architects, 1988: 77–84.
[2] QUADVLIEG, F. H. H. A. , TOXOPEUS S. L. Prediction of Crabbing in the Early Design Stage[C]//Practical Design of Ships & Mobile Units, 1998.
[3] LEE, S W , HWANG Y S , KIM, Y S. Crabbing simulation of ship with twin rudder and twin skeg(in Korean)[C]//Proceedings of the Annual Spring Meeting, Society of Naval Architects of Korea, Kwangju, 2000: 144–147
[4] YOO W J, YOO B Y, RHEE K P. An experimental study on the maneuvering characteristics of a twin propeller/twin rudder ship during berthing and unberthing[J]. Ships & Offshore Structures, 2006, 1(3): 191–198
[5] 杜林海. 双桨双舵船舶港内操纵性研究[D]. 大连: 大连海事大学, 2005.
[6] 刘春生, 洪碧光, 滕英祥, 等. 侧推器协助船舶靠离泊操纵的数学模型[J]. 大连海事大学学报, 2007(1): 31–34
[7] 陈锦标, 封伟士, 杨小军, 等. 双桨双舵船横驶靠泊方案[J]. 上海海事大学学报, 2013, 34(4): 1–7
[8] 陈秀嘉. 港内超大型双桨双舵集装箱船舶运动数学模型[D]. 大连: 大连海事大学, 2016.
[9] GORNICZ T , FERRARI V , TOXOPEUS S L . Estimating berthing performance of twin shaft Ship by means of CFD[M]. 2021.
[10] ZOU Lu, ZOU Zao-jian . URANS simulations of a cruise ship in crabbing[C]//Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2021,2021.
[11] 贾欣乐, 杨盐生. 船舶运动数学模型——机理建模与辨识建模[M]. 大连: 大连海事大学出版社, 1999.
[12] 刘正锋, 刘长德, 匡晓峰, 等. 模拟退火算法在动力定位能力评估中的应用[J]. 船舶力学, 2013, 17(4): 7
[13] 王丽丽. 低速域船舶运动仿真平台的设计[D]. 大连: 大连海事大学, 2011.
[14] BLENDERMANN W. Parameter identification of wind loads on ships[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1994, 51(3): 339–351
[15] 张文霞. 船舶动力定位系统控位能力计算算法研究与实现[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[16] YOU Y , CHOI J W , KIM D S , et al. A prediction method of the crabbing capability using penalty method[C]//International ocean and polar engineering conference, 2014: 572-576.