水下排气产生的气泡尺度对隔声效果存在影响。针对水下气体排放过程中的动力学特点,根据单位面积流量相等设计准则,建立水下气体二维排放方程,得到水下气体二维排放装置开孔位置及几何参数的解析表达式。建立有限元模型,对均匀分布和变孔距定孔径分布2种开孔模式进行比较,通过循环水槽试验对排气效果进行验证。仿真计算和试验结果表明,变孔距定孔径分布模式能够有效控制气泡尺度参数分布,对增强气泡隔声效果更有利。
The scale parameters of bubbles produced by underwater exhaust influence the effect of the acoustic insulation. According to the dynamic characteristics in the process of underwater gas exhaust and the design criteria of equal flow per unit area, the two-dimensional exhaust equation of underwater gas is established. The analytical expressions of the opening position and geometric parameters of the two-dimensional exhaust device of underwater gas are obtained. The finite element models are established to compare the two vent patterns of uniform distribution and variable-pitch / constant-size distribution. The exhaust effect is verified by circulating flume test. The simulation and experimental results show that the variable-pitch / constant-size distribution mode can effectively control the distribution of bubbles scale parameters, and enhance the acoustic insulation effect of bubbles.
2023,45(19): 94-98 收稿日期:2022-10-12
DOI:10.3404/j.issn.1672-7649.2023.19.017
分类号:U662.2
作者简介:所俊(1976-),男,博士,高级工程师,研究方向为舰船设计
参考文献:
[1] 张国胜, 顾晓晓, 邢彬彬. 海洋环境噪声的分类及其对海洋动物的影响[J]. 大连海洋大学学报, 2012, 27(1): 89–94
ZHANG G S, GU X X, XING B B. The classification and the impact of marine environment noise on marine animals[J]. Journal of Dalian Ocean University, 2012, 27(1): 89–94
[2] MINNAERT M. On musical air-bubbles and sounds of running water[J]. Philosophical Magazine., 1933, 26: 235
[3] 王红艳, 张法星, 刘昶. 燕尾坎挑流消能噪声的影响因素分析[J]. 水电能源科学, 2019, 37, 228(8): 12–15
WANG H Y, ZHANG F X, LIU C. Analysis of influencing factors of ski-jump energy dissipation noise with dovetail camp[J]. Water Resources and Power, 2019, 37, 228(8): 12–15
[4] 陆遐龄, 梁向前, 胡光川, 等. 水中爆破的理论研究与实践[J]. 爆破, 2006(2): 23–28
LU X L, LIANG X Q, HU G C, et al. Theoretical research and engineering practice about underwater blasting[J]. Blasting, 2006(2): 23–28
[5] 罗佳, 白艳勤, 林晨宇, 等. 不同流速下气泡幕和闪光对光倒刺鲃趋避行为的影响[J]. 水生生物学报, 2015, 39(5): 1065–1068
LUO J, BAI Y Q, LIN C Y, et al. The influence of bubble curtain and strobe light to approach-avoidance behavior of Spinibarbus hollandi Oshima in different flow velocity[J]. Acta Hydrobiologica Sinica, 2015, 39(5): 1065–1068
[6] 张文光, 王虹斌. 水中气泡幕声衰减研究[C]//第四届船舶水噪声学术交流会, 1991, 12: 24-27.
[7] 钱祖文. 水中气泡之间的声相互作用[J]. 物理学报, 1981, 30: 442–447
QIAN Z W. Sound interaction among bubbles in water[J]. Acta Physica Sinica, 1981, 30: 442–447
[8] ELLER A I. Damping constants of pulsating bubbles[J]. The Journal of the Acoustical Society of America, 1970, 47: 1469–1470
[9] QIAN Z. Sound propagation in a medium containing bubbles and the splitting of the resonance peak[J]. Journal of Sound & Vibration, 1993, 168: 327
[10] WATERMAN P C. New formulation of acoustic scattering[J]. The Journal of the Acoustical Society of America, 1969, 45: 1417–1429
[11] DAVIDS N, THURSTON E G. The acoustical impedance of a bubbly mixture and its size distribution function[J]. The Journal of the Acoustical Society of America, 1950, 22: 20–33
[12] FOX F E, CURLEY S R, LARSON G S. Phase velocity and absorption measurements in water containing air bubbles[J]. The Journal of the Acoustical Society of America, 1955, 27: 534–539
[13] LAIRD D T, KENDIG P M. Attenuation of sound in water containing air bubbles[J]. The Journal of the Acoustical Society of America, 1952, 24: 29–32