为研究海洋平台的抗冰性能,利用粘聚单元模型,构建层冰与半潜式海洋平台碰撞的有限元模型进行数值模拟,研究碰撞过程的冰力、结构吸能变化。随后进行粘聚单元参数敏感性分析,研究粘聚单元断裂能量释放率与牵引力-位移准则(TSL)曲线形式的变化对冰力的影响。结果显示,采用粘聚单元法模拟计算得到的冰力值与经验公式计算得到的冰力值偏差仅为2.2%,较为吻合,验证了粘聚单元法模拟层冰与海洋结构物碰撞过程的准确性;立柱外板是碰撞过程中平台的主要耗能构件,吸能占比82.67%;冰力值随着断裂能量释放率的增大而增大,但不同形式的TSL曲线对冰力值的影响十分有限。
In order to study the anti-icing performance of the offshore platform, the finite element model of the collision between layer ice and semi-submersible offshore platform is constructed by using the cohesive element model for numerical simulation. The ice force and structural energy absorption changes during the collision process are analyzed. Subsequently, the sensitivity analysis of cohesive element parameters (the effect of fracture energy release rate and traction-separation law curve) on ice force is studied. The results show that the deviation between the ice force calculated by the cohesive element method and the one calculated by the empirical formula is only 2.2%, which verifies the accuracy of the cohesive element method in simulating the collision process between layer ice and marine structures. The outer plate of the column is the main energy consuming component of the platform during the collision, and the energy absorption accounts for 82.67%. The ice force value increases with the increase of fracture energy release rate, but the influence of different forms of TSL curve on the ice force value is very limited.
2023,45(19): 99-103 收稿日期:2022-08-29
DOI:10.3404/j.issn.1672-7649.2023.19.018
分类号:U661.4
基金项目:国家自然科学基金资助项目(51979130);江苏省自然科学基金面上项目(BK20191460)
作者简介:张健(1977-),男,博士,教授,研究方向为船舶与海洋结构物抗冰载荷性能
参考文献:
[1] GÜRTNER A. Experimental and numerical investigations of ice-Structure interaction[J]. Norges teknisk-naturvitenskapelige universitet, Fakultet for ingeniø rvitenskap og teknologi, Institutt for bygg, anlegg og transport, 2009, 13(2): 21–30
[2] GÜRTNER A, BJERKS M, FORSBER J, et al. Numerical modelling of a full scale ice event[C]// 20th IAHR International Symposium on Ice. 2010: 48–60.
[3] KOUNK I, YU S. A cohesive element framework for dynamic ice-structure interaction problems: part III—case studies[C]// Asme International Conference on Ocean, 2010: 801–809.
[4] STATOILHYDRO A G, BJERKS M, W KÜHNLEUN, et al. Numerical simulation of ice action to a lighthouse[J]. American Society of Mechanical Engineers, 2009, 23(11): 77–86
[5] BJERKÅS, MORTEN, ALBREKTSEN A, et al. Static and dynamic ice actions in the light of new design codes[C]// Asme International Conference on Ocean. American Society of Mechanical Engineers, 2010: 12–19.
[6] FENG D, PANG S D, ZHANG J. Polar and arctic sciences and technology; petroleum technology - parameter sensitivity in numerical modelling of I[J]. ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering - Busan, South Korea, 2016(8): V008T07A012.
[7] PANG S D, ZHANG J, POH L H, et al. The modelling of ice-structure interaction with cohesive element method: limitations and challenges[C]//International Conference on Port & Ocean Engineering Under Arctic Conditions, 2015: 24–34.
[8] 王峰. 基于粘聚单元模型的海洋结构物与平整冰相互作用数值研究[D]. 上海: 上海交通大学, 2019.
[9] 王峰, 邹早建, 任奕舟. 基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟[J]. 振动与冲击, 2019, 38(16): 153–158
[10] 蒋昱妍. 基于粘聚单元法的海洋结构物-层冰碰撞数值模拟[D]. 大连: 大连理工大学, 2020.
[11] 詹开宇, 曹留帅, 万德成. 基于黏聚单元法计算分析海洋平台锥形立柱冰载荷[J]. 海洋工程, 2021, 39(4): 62–69
[12] 黄其. 基于内聚力单元法的海洋结构物冰载荷模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[13] 卢腾超, 邹早建, 王阳, 等. 考虑初始缺陷的平整冰-锥体结构碰撞数值模拟[J]. 振动与冲击, 2021, 40(6): 250–256
[14] 董科, 李友龙. 半潜式海洋平台受浮冰撞击作用损伤分析[J]. 舰船科学技术, 2018, 40(1): 57–61
DONG K, LI Y L. Damage analysis of a semi-submersible offshore platform bump by floating ice[J]. Ship Science and Technology, 2018, 40(1): 57–61
[15] 董庆峰. 大尺度海洋结构上的冰力识别研究[D]. 青岛: 中国石油大学, 2006.
[16] CORNEC A, SCHEIDER I, SCHWALBE K H. On the practical application of the cohesive model[J]. Engineering fracture mechanics, 2003, 70(14): 1963–1987