目前,建立在静水面上的FPV电站单浮体结构已经不能完全适应复杂多变的海上环境,故提出适用于海上水动力学FPV阵列系统的3种浮筒式浮体结构,以1×5 阵列FPV系统为研究对象,采用大型通用软件AQWA对1×5 FPV阵列系统进行水动力研究,分析这3种浮体结构在不同工况下的稳定性和端部缆绳的受力情况。结果显示,单浮筒结构浮体适合在风荷载较小的水面安装,多浮筒结构的浮体更适合安装在复杂多变的海上环境。研究结果对未来FPV阵列系统的设计提供一定的理论基础。
At present, the single-floating structure of the FPV power station built on the still water cannot fully adapt to the complex and changeable offshore environment. Therefore, three pontoon-type floating structures are proposed for the FPV array system for offshore hydrodynamics. Taking the 1×5 array FPV system as the research object, the large-scale general software AQWA is used to conduct hydrodynamic research on the 1×5 array FPV system,the stability of the three floating structures under different working conditions and the force of the end cables are analyzed. The results show that the single-buoy structure buoy is suitable for installation on the water surface with less wind load, and the multi-buoy structure buoy is more suitable for installation in the complex and changeable offshore environment. The research results provide an important theoretical basis for the design of future FPV array systems.
2023,45(19): 104-110 收稿日期:2022-09-02
DOI:10.3404/j.issn.1672-7649.2023.19.019
分类号:P751
作者简介:张景飞(1974-),男,博士,副教授,研究方向为漂浮式光伏系统力学性能
参考文献:
[1] 耿娜. 太阳能光伏发电现状与发展前景分析[J]. 现代经济信息, 2018(17): 368
[2] 陈静, 郑维娟. 中国太阳能光伏发电的发展现状及前景[J]. 时代农机, 2018, 45(3): 48–49.
[3] MV A, SC A, AVA B, et al. Solar photovoltaic Tree: urban PV power plants to increase power to land occupancy ratio[J]. Renewable Energy, 2022.
[4] PINTO S, STOKKERMANS J. Assessment of the potential of different floating solar technologies—overview and analysis of different case studies[J]. Energy Conversion and Management, 2020, 211.
[5] PEREZ M, PEREZ R, FERGUSON C R, et al. Deploying effectively dispatchable floating PV on reservoirs: comparing floating PV to other renewable technologies[J]. Solar Energy, 2018, 174: 837–847
[6] AB A, AW A, MW B, et al. Issues, challenges, and current lacunas in design, and installation of ground mounted solar PV module mounting structure (MMS)[J]. 2022.
[7] 高亮, 窦珍珍, 白桦, 等. 光伏组件风荷载影响因素分析[J]. 太阳能学报, 2016, 37(8): 1931–1937
[8] DS A, ME A, KA A, et al. Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation[J]. Computational Intelligence in Electrical Engineering, 2021.
[9] LI Z, JI J, YUAN W, et al. Experimental & numerical investigation and optimization on a novel flat-plate PV/T system using CdfTe thin-film solar modules of sandwich structure[J]. Solar Energy, 2021, 223: 261–277
[10] 朱绍宇, 张世富, 张冬梅, 等. 基于AQWA对一种小型浮动平台的动态响应研究[J]. 化工机械, 2021, 48(6): 888–895
[11] 王江云, 李雅琴, 姜龙俊, 等. 双进气道旋风分离器内不同粒径颗粒流动特性[J]. 化工机械, 2018, 45(2): 225–231
[12] 丁勤卫, 李春, 袁伟斌, 等. 风波耦合作用下垂荡板对漂浮式风力机Spar平台动态响应影响[J]. 中国电机工程学报, 2019, 39(4): 1113–1127
[13] 岳敏楠, 王博, 李春, 等. 阵列式平台漂浮式风电场Spar平台动态响应及稳定性改进研究[J]. 振动与冲击, 2021, 40(3): 263–278