随着海上风电场的开发逐步走向深海,对风电运维模式要求也愈发严格。本文提出以风电运维平台为中转站运维模式设计的一种菱形风电运维平台。在舷侧结构在浮式风电运维生活平台方案设计的基础上,对平台浮体提出2种结构方案,运用SESAM中Genie模块建立菱形平台有限元模型,确定边界条件和约束,施加环境载荷,对这2种结构方案在各工况下进行有限元强度分析,对比校核,最终得到结构强度满足要求且运维效率更高更安全可靠的平台结构。
As the development of offshore wind farms gradually goes to the deep sea, the requirements for wind power operation and maintenance mode are becoming increasingly strict. This paper proposes a kind of diamond offshore wind power living platform designed with the offshore wind power living platform as the transfer station operation and maintenance mode. Based on the design of the floating wind power platform for the side structure, two structural schemes are proposed for the floating body of the platform. The Genie module in SESAM is used to establish the finite element model of the diamond platform, determine the boundary conditions and constraints, and impose environmental loads. The finite element strength analysis of these two structural schemes is carried out under various working conditions. Finally, a platform structure with higher operation efficiency and higher safety and reliability is obtained through comparison and checking.
2023,45(19): 118-123 收稿日期:2022-07-08
DOI:10.3404/j.issn.1672-7649.2023.19.021
分类号:U662.43
基金项目:国家自然科学青年基金资助项目(52101357)
作者简介:陈悦(1979-),女,副教授,主要从事船舶设计方向的教学和科研工作
参考文献:
[1] 朱黎. 海上风电为可再生能源发展的新领域[J]. 新能源科技, 2021(12): 2–3
[2] 许元军. 海上风电运维市场的新契机与对策[J]. 中国市场, 2016(19): 63–64
[3] 张洪流, 商明星, 刘正亮, 等. 海上风电运维关键装备与技术[J]. 船舶工程, 2021, 43(S1): 6–8
[4] 孙雷, 汪锋, 张雯, 等. 海上风电运维: 从近海走向深远海域[J]. 太阳能, 2018(6): 6–10
[5] 顾雪. 海洋平台结构优化设计设计方法[J]. 城市建设理论研究(电子版), 2015(23): 2279–2280
[6] Olav F. Shell structures in offshore platforms: design and application[J]. Engineering Structures, 1981, 3(3): 140–152
[7] 王仁华. 疲劳裂纹损伤下海洋平台结构的极限强度研究[J]. 江苏科技大学学报(自然科学版), 2019, 33(5): 6–11
[8] 漆亮东. 浮式风电运维生活平台方案设计与运动响应研究[D]. 镇江: 江苏科技大学, 2019.
[9] 中国船级社. 钢质海船入级规范[M]. 北京: 人民交通出版社, 2018.
[10] 中国船级社. 国内航行海船入级规范[M]. 北京: 人民交通出版社, 2018.
[11] 中国船级社. 海上移动平台入级规范[M]. 北京: 人民交通出版社, 2020.