为了有效利用极地气垫破冰船的发动机余热,需要研究相应的数值模拟方法。本文基于计算流体力学方法及混合物多相流模型,对包括舱室和垫升风机在内的内外部流场,进行与热交换相关的流场和温度场数值模拟。结果表明,加热对于改善垫升风机的推进效率有利,可使舱室平均温度上升41.13 ℃,垫升风机内平均温度上升34.16 ℃,对于极地气垫破冰船舱室及垫升风机内平均气温的提升有显著效果。混合物多相流模型用于数值求解此类热交换问题的有效性得到了验证。
In order to effectively utilize the engine waste heat of polar air-cushion ice-breaker, it is necessary to study the corresponding numerical simulation methods. Based on the mixture multiphase model of computational fluid dynamics, the numerical simulation methods of flow field and temperature field related to heat transfer are studied for the internal or external flow pertaining to the cabin and centrifugal fans. It is shown that heating is beneficial to improve the propulsive efficiencies of the centrifugal fans; It can increase the average temperature in the cabin by 41.13 ℃ and the average temperature in the fan by 34.16 ℃, which has a significant effect on the increase of the average temperature in the cabin and the centrifugal fans of the polar air-cushion ice breaker. The effectiveness of the mixture multiphase model for numerically solving such heat exchange problems has been verified.
2023,45(19): 124-129 收稿日期:2022-09-13
DOI:10.3404/j.issn.1672-7649.2023.19.022
分类号:U661.1
基金项目:国家重点研发计划资助项目(2018YFC1406000)
作者简介:傅慧萍(1972-),女,博士,副教授,研究方向为计算流体力学
参考文献:
[1] 高嵩, 张俊, 张进. 极地气垫破冰/运输平台破冰机理和关键技术[J]. 船舶, 2018(6): 117–122
GAO S, ZHANG J, ZHANG J. Key technology and ice-breaking mechanism of polar air-cushion ice-breaking/transportation platform[J]. Ship & Boat, 2018(6): 117–122
[2] JOSE S S, CHIDAMBARAM R K. Thermal comfort optimization in an electric vehicle[J]. International Journal of Heat and Technology, 2021, 39(6): 1957–1965
[3] 陈岩松. 高热流密度数据机房新型散热技术研究[D]. 长春: 吉林建筑大学市政与环境工程学院, 2019.
[4] 柴婷, 毛佳炜, 陆懿东. 基于CFD模拟的船舶空调舱室热舒适性研究[J]. 船舶与海洋工程, 2015, 31(2): 37–42
CHAI T, MAO J W, LU Y D. Research on thermal comfort of ship air conditioning cabin based on CFD[J]. Naval Architecture and Ocean Engineering, 2015, 31(2): 37–42
[5] 周俊男. 舰船舱室气流组织的数值与实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[6] 程东梅. 船舶居住舱室气流组织数值仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
[7] 王露. 离心风机流动特性研究[D]. 兰州: 兰州交通大学. 2018.
[8] ONMA P, CHANTRASMI T. Comparison of two methods to determine fan performance curves using computational fluid dynamics[C]//Proceedings of the 8th TSME-International Conference on Mechanical Engineering (TSME-ICoME 2017). 2018: 1−8.