为提高船舶通信网络异常数据自动检测精度,并全面剔除船舶通信网络异常数据,研究新的船舶通信网络异常数据自动检测和剔除方法。利用基于改进支持向量机的网络异常数据自动检测方法,由改进粒子群优化算法,寻优设置支持向量机的惩罚项、核函数的预定义参数,训练性能合格的支持向量机后,以船舶通信网络数据分类的方式,自动检测船舶通信网络异常数据;将异常数据使用基于自适应级联陷波器的异常数据剔除方法,通过自适应级联陷波器,以异常数据滤波的方式,剔除船舶通信网络异常数据。研究结果显示,使用所提方法,船舶通信网络异常数据自动检测结果符合实际数目,可有效去除船舶通信网络异常数据。
To improve the accuracy of automatic detection of abnormal data in ship communication networks and comprehensively eliminate abnormal data in ship communication networks, a new method for automatic detection and elimination of abnormal data in ship communication networks is studied. This method utilizes an improved support vector machine based network anomaly data automatic detection method. The improved particle swarm optimization algorithm optimizes and sets the penalty terms and predefined parameters of the kernel function of the support vector machine. After training a qualified support vector machine, the ship communication network anomaly data is automatically detected through classification of ship communication network data; Using an adaptive cascaded notch filter based anomaly data removal method, the abnormal data in the ship communication network is filtered through the adaptive cascaded notch filter. The research results show that under the use of the proposed method, the automatic detection results of abnormal data in the ship communication network match the actual number, and can effectively remove abnormal data in the ship communication network.
2023,45(19): 173-176 收稿日期:2023-04-05
DOI:10.3404/j.issn.1672-7649.2023.19.032
分类号:TP393
基金项目:吉林省教育科学规划课题(GH21011)
作者简介:侯立(1980-),男,博士,讲师,研究方向为数据处理
参考文献:
[1] 金华标, 肖骁. 基于北斗短报文与4G的内河船载智能终端船岸通信技术[J]. 船海工程, 2021, 50(4): 67-71+76.
JIN Hua-biao, XIAO Xiao. On Ship-to-shore communication technology of inland waterway shipboard intelligent terminal based on Beidou short message and 4G[J]. Ship & Ocean Engineering, 2021, 50(4): 67-71+76.
[2] 张玉涛, 李国栋, 汤涛林, 等. 基于渔业船联网的船载终端系统设计与实现[J]. 渔业现代化, 2022, 49(4): 80-87.
ZHANG Yu-tao, LI Guo-dong, TANG Tao-lin, et al. Design and implementation of shipborne terminal system based on fishery internet of vessels[J]. Fishery Modernization, 2022, 49(4): 80-87.
[3] 周毅. 智能船舶网络风暴测试及抑制技术[J]. 船海工程, 2021, 50(3): 41-44+48.
ZHOU Yi. Network storm test and suppression technology for smartship[J]. Ship & Ocean Engineering, 2021, 50(3): 41-44+48.
[4] 徐轶群, 徐弘, 孟令超, 等. 全船无线通信系统网络架构与可靠性研究[J]. 船舶工程, 2021, 43(6): 85-89+95.
XU Yi-qun, XU Hong, MENG Ling-chao, et al. Research on network architecture and reliability of wireless communication system for full-scale ship[J]. Ship Engineering, 2021, 43(6): 85-89+95.
[5] 张泽辉, 管聪, 高航, 等. 面向船联网的高效隐私保护联邦学习方法[J]. 中国船舶研究, 2022, 17(6): 48-58.
ZHANG Ze-hui, GUAN Cong, GAO Hang, et al. Efficient privacy-preserving federated learning method for Internet of Ships[J]. Chinese Journal of Ship Research, 2022, 17(6): 48-58.
[6] 王栽毅, 杨照. 船联网智能数据传输与通信算法研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(7): 108-114.
WANG Zai-yi, YANG Zhao. Research on intelligent data transmission and communication algorithms for ship networking[J]. Periodical of Ocean University of China, 2021, 51(7): 108-114.