用大肋骨把长圆柱壳分成多个小段,并且每个小段的长度分布是非周期的,控制加肋圆柱壳振动的传递。采用有限元法,计算加肋圆柱壳的振动场,采用波数分析法,将加肋圆柱壳的径向振动场分解为具有不同周向振动模式的系列行进波的叠加,将各周向振动模式下不同通频带的振动等效为耦合振子链的振动,耦合振子链的固有频率、耦合系数由通频带的带宽和起始频率确定,耦合振子链的对地刚度方差由非周期圆柱壳结构的不规则程度等参数确定,用耦合振子链系统的振动能量衰减率公式计算圆柱壳振动能量衰减率,研究振动衰减规律和特性。结果表明,采用大肋骨将长圆柱壳分成多个长度随机分布的小段圆柱壳可以控制振源振动沿着圆柱壳的传递,达到减小圆柱壳振动目的。
The long cylindrical shell is divided into multiple small segments with large ribs, and the length distribution of each segment is non-periodic, controlling the transmission of the vibration of the ribbed cylindrical shell. Using the finite element method, the vibration field of the ribbed cylindrical shell is calculated, and the wave number analysis method is used to decompose the radial vibration field of the ribbed cylindrical shell into the superposition of a series of traveling waves with different circumferential vibration modes, and the vibration of different pass bands in each circumferential vibration mode is equivalent to the vibration of the coupled oscillator chain, the natural frequency and coupling coefficient of the coupled oscillator chain are determined by the bandwidth and starting frequency of the passband, and the ground stiffness variance of the coupled oscillator chain is determined by the irregularity of the non-periodic cylindrical shell structure. The vibration energy attenuation rate formula of the coupled oscillator chain system is used to calculate the vibration energy decay rate of the cylindrical shell, and the vibration attenuation law and characteristics are studied, and the results show that the long cylindrical shell is divided into multiple small segments of cylindrical shell with a large rib and randomly distributed length can control the transmission of vibration source vibration along the cylindrical shell, so as to reduce the vibration of the cylindrical shell.
2023,45(20): 7-13 收稿日期:2022-7-11
DOI:10.3404/j.issn.1672-7649.2023.20.002
分类号:O327;U661.44;V214.3
基金项目:国家自然科学基金资助项目(52071334)
作者简介:刘文玺(1977-),男,博士,副教授,研究方向为舰船隐身技术
参考文献:
[1] HODGES C H, WOODHOUSE. Vibration Isolation from irregularity in a nearly periodic structure: theory and measurements[J]. Journal of the Acoustical Society of America, 1983, 74(3): 894–905
[2] ZHANG W G, VLAHOPOULOS N, WU K C. An energy finite element formulation for high-frequency vibration analysis of externally fluid-loaded cylindrical shells with periodic circumferential stiffeners subjected to axis-symmetric excitation[J]. Journal of Sound and Vibration, 2005, 282: 679–700
[3] 李静茹, 黎胜. 复合局域共振梁结构带隙研究[J]. 应用声学, 2018, 37(3): 345–355
LI Jingru, LI Sheng. Band gap of composite local resonance beam[J]. Journal of Applied Acoustics, 2018, 37(3): 345–355
[4] 王娇. 周期结构中的反常波传播行为及其调控[D]. 浙江: 浙江大学, 2019: 1-58.
WANG Jiao. Abnormal wave propagation behavior and its regulation in periodic structure [D]. Zhejiang: Zhejiang University, 2019: 1-58.
[5] 陈斌, 黄修长. 周期结构振动控制研究现状[J]. 噪声与振动控制, 2011, 31(5): 37–41
CHEN Bin, HUANG Xiuchang. Summary on vibration control of periodic structure[J]. Noise and Vibration Control, 2011, 31(5): 37–41
[6] 宋玉宝. 周期结构禁带调控与减振降噪应用探索研究[D]. 长沙: 国防科学技术大学, 2015: 1-153.
SONG Yubao. Application exploration of bandgap regulation, vibration reduction and noise reduction of periodic structure [D]. Changsha: National University of Defense Technology, 2015: 1-153.
[7] 喻浩, 陈荣. 周期弹簧振子结构的局域共振带隙和布拉格带隙特征研究[J]. 船舶工程, 2017, 5(10): 41–44
YV Hao, CHEN Rong. Study on locally resonance and bragg band gap characteristics of periodic mass spring structure[J]. Naval Architecture, 2017, 5(10): 41–44
[8] 茅凯杰. 周期结构减振系统振动特性研究[D]. 镇江: 江苏科技大学, 2019: 9-32.
MAO Kaijie. Study on vibration characteristics of periodic structure vibration absorption system [D]. Zhenjiang: Jiangsu University of Science and Technology, 2019: 9-32.
[9] HODGES C H. Confinement of vibration by structural irregularity [J]. Journal of Sound and Vibration, 1982, 82(3): 411-424.
[10] 刘文玺, 周其斗. 肋骨非均匀排列的圆柱壳振动特性研究[J] 船舶力学, 2019, 23(1): 6-10.
LIU Wenxi, ZHOU Qidou, Influence of aperiodic frames on vibration characteristics of cylindrical shell, Journal of Ship Mechanics, 2019, 23(1): 68-77.
[11] Photiadis D M, HOUSTON B H. Anderson localization of vibration on a framed cylindrical shell [J]. The Journal of the Acoustical Society of America. 1999, 106(3): 1377-1391.
[12] LIU Wenxi, ZHOU Qidou. Study on characteristics of radiated noise from the cabin structure with nonuniform subdivision. Journal of Ship Mechanics, 2016, 20(8): 1045-1058.
[13] KISSEL G J. Localization in disordered periodic structures [D]. Cambridge: Massachusetts Institute of Technology, 1988,
[14] FURSTENBERG H. Noncommuting random products[J]. Transactions of the American Mathematical Society, 1963, 108(3): 377–428
[15] HERBERT D C, JONES R. Localized states in disordered systems[J]. Journal of Physics C:Solid State Physics, 1971, 4: 1145–1161
[16] LIU Wenxi, GUAN Huiren. Study on structural-acoustic characteristics of cylindrical shell based on wavenumber spectrum analysis method[J]. Brodogradnja/Shipbuilding/Open access, 2021, 72(2): 57–71
[17] FAHY F, GARDONIO P. Sound and Structural Vibration: Radiation, Transmission and Response [M]. UK: Elsevier. 2007: 102-233.