基于Fluent的VOF模型开展气泡动态特性数值模拟,得到气泡脉动周期、流场中测点处压力及质点速度,并分析了气泡初始内压及初始半径对气泡动态特性的影响规律。结果表明,气泡初始内压及初始半径越大,气泡最大膨胀半径越大,脉动周期越长,流场中测点处压力峰值及质点速度峰值越大。水下爆炸气泡的初始状态直接影响其动态特性,数值模拟结果对水下爆炸气泡动态特性研究具有参考意义。
The dynamic characteristic of the bubble is simulated with the VOF model of Fluent, the pulsation period of the bubble and the pressure and particle velocity of the measuring point in the flow field are obtained. The effects of the initial inner pressure and radius of the bubble on its dynamic characteristic are analyzed, the results indicate that the initial internal pressure and radius of the bubble is greater, the maximum radius of the bubble is bigger, the pulsation period is longer, and the peak pressure and the maximum particle velocity of the measuring point in the flow field are greater. The initial state of the underwater explosion bubble directly influence its dynamic characteristic, so the conclusions offer significant reference for the further study of the underwater explosion bubble dynamic characteristic.
2023,45(20): 14-17 收稿日期:2022-10-10
DOI:10.3404/j.issn.1672-7649.2023.20.003
分类号:U661.2
作者简介:巨圆圆(1986-),男,博士,研究方向为舰艇爆炸毁伤与防护
参考文献:
[1] COLE R H. Underwater explosion [M]. New Jersey: Princeton University Press, 1948: 118-127.
[2] 姚熊亮, 刘文韬, 张阿漫, 等. 水下爆炸气泡及其对结构毁伤研究综述[J]. 中国舰船研究, 2016, 11(1): 36–45
YAO X L, LIU W T, ZHANG A M, et al. A review of research on underwater exploding bubbles and their damage to structures[J]. Chinese Journal of Ship Research, 2016, 11(1): 36–45
[3] 段超伟, 宋 浦, 胡宏伟, 等. 水下爆炸气泡动态特性的研究进展[J]. 爆破, 2022, 39(1): 140-151.
[4] 曾令玉, 蔡尚, 王诗平. 水下爆炸气泡对舰船冲击环境的影响[J]. 中国舰船研究, 2018, 13(3): 66–71
ZENG L Y, CAI S, WANG S P. Effects of underwater explosion bubble on shock environment of warship[J]. Chinese Journal of Ship Research, 2018, 13(3): 66–71
[5] 文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J]. 爆炸与冲击, 2022, 42(5): 053203.
[6] 黄毅, 张弩. 水下爆炸气泡脉动载荷影响因素分析[J]. 中国舰船研究, 2013, 8(6): 33–39
HUANG Y, ZHANG N. Analysis of the impact parameters of the bubble pulsation load in underwater explosion[J]. Chinese Journal of Ship Research, 2013, 8(6): 33–39
[7] ZHANG A M, WANG S P, HUANG C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics[J]. European Journal of Mechanics B:Fluids, 2013, 42: 69–91
[8] 孙远翔, 田俊宏. 近场水下爆炸载荷及舰船结构动态响应研究综述[J]. 舰船科学技术, 2019, 41(6): 1–8
SUN Y X, TIAN J H. Review of near-field underwater explosion load and ship structure dynamic response[J]. Ship Science And Technology, 2019, 41(6): 1–8
[9] 任松涛, 郭炜, 金朋刚. 炸药水中爆炸气泡脉动冲量试验研究[J]. 科学技术与工程, 2017, 17(13): 173-176.
[10] BRACK BILL, J U KOTHE, D B ZEMACH. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100: 335–354