噪声规范中以校核机械振动产生的噪声为主,但高幅值的砰击力周期性地与船体相互作用,已成为船舶首部舱室的重要噪声源,故开展由砰击引发的舱室噪声问题数值模拟研究。以某大型客滚船为例,采用CFD软件STAR-CCM+对船体首部的砰击现象进行数值模拟,编制时域-频域转化程序,并借助声学分析软件VA One,将砰击力作为外载荷计入声学分析模型,获得船体典型舱室内的噪声水平。结果表明,该计算方法能够快速有效地得到由砰击引发的船舶舱内噪声水平。针对某大型客滚船首部区域,每增加一级海况,船体首部由于砰击引发的声压级提高约3 dB左右。该计算流程实现了流体力学与声学计算一体化,给出一种关于砰击现象引发舱室内噪声的数值预报方法,为实船降噪提供了可靠的保障,对相关船型的设计工作具有参考价值。
The existing regulation of cabin noise is the noise of this focus due to the mechanical vibration. Since the periodical interaction between the high amplitude slamming forces at the ship bow may be an important noise source of the cabins, numerical investigations on the bow slamming induced cabin noise were conducted. Taking a large RO-RO ship as a computational example, numerical studies were performed by combing the computational fluid dynamics (CFD) and acoustic simulation. The slamming phenomena were simulated using the CFD code STAR-CCM+. The computed time-domain slamming forces were then converted into the frequency-domain using the self-developed signal converter before being substituted into the acoustic analysis as the external excitations. The acoustic simulation yielded finally the noise level of the overall ship hull and some typical cabins. Numerical results show that the sound pressure level caused by the slamming increases about 3 dB with each increment of the sea state level.A numerical prediction method for cabin noise caused by slamming is presented, which provides a useful tool for noise performance analysis of large passenger ships. The presented numerical results are of reference values to the design of related ship types.
2023,45(20): 25-31 收稿日期:2022-9-20
DOI:10.3404/j.issn.1672-7649.2023.20.005
分类号:U662.2
基金项目:教育部、财政部重大科研项目(教技函[2013]35 号)
作者简介:何丽丝(1988-),女,硕士,工程师,研究方向为船舶结构的可靠性和安全性
参考文献:
[1] 陈小剑. 舰船噪声控制技术[M]. 上海: 上海交通大学出版社, 2013
[2] International Maritime Organization, Code on noise levels on board ships[S]. 2014.
[3] 李倩, 刘志坚. 吉春正. MLC2006 公约新造船验证分析[J]. 船舶, 2014, 2014(5): 114-1147
LI Q, LIU Z J, JI C Z. Analysis of verifi cation of newly built ships following MLC 2006[J]. Ship, 2014, 2014(5): 114-1147.
[4] RICHARDSON E G. The sounds of impact of a solid on a liquid surface[J]. Proceedings of the Physical Society Section B, 1955, 61(4): 352
[5] 鲍筱玲, 汤渭霖. 击水声特性研究[J]. 哈尔滨船舶工程学院学报, 1981, (1): 27-39.
BAO X L, TANG W L. Investigations of the impact noise[J]. Journal of Harbin shipbuilding Engineering Institute, 1981, (1): 27-39.
[6] 汤渭霖, 俞孟萨, 王斌, 水动力噪声理论[M]. 北京: 科学出版社, 2019.
[7] 邓方舟. 低速物体入水声特性研究[D]. 哈尔滨: 哈尔滨工程大学. 2020.
[8] BARJASTEH M, ZERAATGAR H. A contribution to underwater acoustic problem in water entry of wedge-shaped bodies[J]. Applied Ocean Research, 2021. 111: p. 102649.
[9] BURROUGHS C, FISCHER R, KERN F, An introduction to statistical energy analysis[J], Journaal of Acoustical Society of American, 1997.
[10] FALTINSEN, O M. Sea loads on ships and offshore structures[M]. Cambridge: Cambridge University Press. 1990.
[11] American National Standard. Criteria for evaluating room noise[S]. ANSI/ASA S12.2, 2008.