磁性材料的轴旋转时,将引起周围空间低频磁异常,该信号的频率低,线谱特征明显成为新的可探测源。由于船壳材料为磁性良导体,对电磁场具有一定屏蔽作用,为了实现对磁性源产生的轴频电磁场进行准确建模,需要考虑舰船壳体自身的磁场屏蔽作用。因此,本文构建有限元仿真模型,对不同频率下的磁屏蔽系数进行仿真计算,并进行试验验证。分析结果表明:对于同一舰船壳体而言,磁屏蔽系数随着频率的增加而减小。1 Hz对应的屏蔽系数在0.6~0.7之间,5 Hz对应的屏蔽系数在0.2~0.3之间,10 Hz对应的屏蔽系数约为0.1,为磁性源产生的轴频电磁场的准确建模打下理论基础。
In order to achieve the shaft frequency electromagnetic field in magnetic source for accurate modeling, to consider ship body own magnetic field shielding effect, therefore, in this paper, based on the theoretical calculation of the magnetic shielding factor, builds the finite element simulation model of the magnetic shielding coefficient under different frequency simulation calculation, and finally to test. The analysis results show that for the same ship shell, the magnetic shielding coefficient decreases with the increase of frequency. The shielding coefficient corresponding to 1 Hz is between 0.6 and 0.7, the shielding coefficient corresponding to 5 Hz is between 0.2 and 0.3, and the shielding coefficient corresponding to 10Hz is about 0.1, which lays a theoretical foundation for the accurate modeling of the axial frequency electromagnetic field generated by the magnetic source.
2023,45(20): 62-66 收稿日期:2022-9-14
DOI:10.3404/j.issn.1672-7649.2023.20.011
分类号:U674.7
作者简介:李国栋(1997-),男,硕士研究生,研究方向为舰船电磁感知技术
参考文献:
[1] 耿攀, 王向军, 王建勋, 等. 船舶磁防护与电场防护耦合性分析[J]. 数字海洋与水下攻防, 2019, 2(1): 77–80
GENG Pan, WANG Xiang-jun, WANG Jian-xun, et al. Coupling analysis of ship magnetic protection and electric field protection[J]. Digital Ocean and Underwater Attack and Defense, 2019, 2(1): 77–80
[2] 毛伟, 张宁, 林春生. 在三层介质中运动的时谐水平偶极子产生的电磁场[J]. 电子学报, 2009, 37(9): 2077–2081
MAO Wei, ZHANG Ning, LIN Chun-sheng. Electromagnetic field generated by a time-harmonic horizontal dipole moving in a three-layer medium[J]. Acta Electronica Sinica, 2009, 37(9): 2077–2081
[3] 张岳, 胡祥云, 韩波. 我国轴频电场研究现状[J]. 地球物理学进展, 2022, 37(3): 1342-1351.
ZHANG Yue, HU Xiang-yun, HAN Bo. Research status of axial frequency electric field in China [J]. Progress in Geophysics, 222, 37(3): 1342-1351.
[4] 田永民, 李忠猛. 运动多桨舰船在浅海中的轴频电磁场计算及仿真[J]. 舰船电子工程, 2018, 38(4): 118–121
TIAN Yong-min, LI Zhong-meng. Axial frequency electromagnetic field calculation and simulation of moving multi-propeller ship in shallow sea[J]. Ship Electronic Engineering, 2018, 38(4): 118–121
[5] 徐震寰, 李予国, 罗鸣. 船舶轴频电磁场信号的海底测量及其特性分析[J]. 哈尔滨工程大学学报, 2018, 39(4): 652–657
XU Zhen-huan, LI Yu-guo, LUO Ming. Seabed measurement and characteristic analysis of ship shaft frequency electromagnetic field signal[J]. Journal of Harbin Engineering University, 2018, 39(4): 652–657
[6] 张立琛, 王英民, 陶林伟. 舰船腐蚀相关轴频电磁场场源建模[J]. 哈尔滨工程大学学报, 2017, 38(10): 1525–1530
ZHANG Li-chen, WANG Ying-min, TAO Lin-wei. Modeling the electromagnetic field source of ship corrosion-related axial frequency[J]. Journal of Harbin Engineering University, 2017, 38(10): 1525–1530
[7] 张立琛, 王英民, 郭拓. 基于磁偶极子的舰船轴频电磁场场源建模与试验验证[J]. 西北工业大学学报, 2016, 34(5): 829–836
ZHANG Li-chen, WANG Ying-min, GUO Tuo. Modeling and experimental verification of ship axial frequency electromagnetic field source based on magnetic dipole[J]. Journal of Northwestern Polytechnical University, 2016, 34(5): 829–836
[8] 张晚英, 施乐, 张杰峰, 等. 多层圆柱形磁屏体磁屏蔽特性研究[J]. 湖南大学学报(自然科学版), 2017, 44(8): 84–90
ZHANG Wan-ying, SHI Shi, ZHANG Jie-feng, et al. Research on magnetic shielding characteristics of multilayer cylindrical magnetic plate[J]. Journal of Hunan University (Natural Science Edition), 2017, 44(8): 84–90
[9] 吴逸汀, 盛卫星, 韩玉兵, 等. 金属材料低频磁场屏蔽效能研究[J]. 电波科学学报, 2015, 30(4): 673–678
WU Yi-ting, SHENG Wei-xing, HAN Yu-bing, et al. Research on shielding efficiency of metal materials in low frequency magnetic field[J]. Chinese Journal of Radio Science, 2015, 30(4): 673–678
[10] 李安金, 赵仁涛. 低频磁场屏蔽问题简述[J]. 科技信息, 2013(3): 211–212+242
LI An-jin, ZHAO Ren-tao. Brief introduction of low frequency magnetic field shielding[J]. Science and Technology Information, 2013(3): 211–212+242