为实现海空一体无人机的深潜功能,同时保证其在跨介质过渡阶段的可靠性和稳定性,本文采用变结构的方式,提出一个具有深潜功能的新型海空一体无人机设计方案。为了验证海空一体无人机的结构合理性、深海抗压能力和变结构性能,利用Solidworks软件对其关键部位的强度、变结构的运动学性能和结构布局的合理性进行了校验。结果表明,该海空一体无人机设计方案能够满足强度和变结构运动性能的要求,且结构布局合理,从而为具有深潜功能海空一体无人机的研发和应用奠定了基础。
To realize the deep diving function of the sea-air UAV(unmanned aerial vehicle), at the same time to ensure its reliability and stability during the cross-medium transition, this paper adopts a new design scheme of the sea-air UAV with deep diving function by using the structural deformation method. In order to verify the structural rationality, deep sea compression capability and variable structure performance of sea-air UAV, use Solidworks for checking the strength of key parts, kinematic permance of variable structure and rationality of structure layout. The results show that the design scheme of sea-air UAV can meet requirements of strength and variable structure movement performance, and the structure layout is reasonable, so as to lay the foundation for the research and application of the sea-air UAV with deep diving function.
2023,45(20): 74-78 收稿日期:2022-10-4
DOI:10.3404/j.issn.1672-7649.2023.20.013
分类号:U662
作者简介:刘强(1980-),男,博士,教授,研究方向为机器人技术
参考文献:
[1] QI D, FENG J F, LIU A, et al. Overview on the development and key technologies of water-air UAV[C]// International Conference on Control. IEEE, 2016.
[2] Jun-Hua H U, Bao-Wei X U, Feng J F, et al. Research on Water-Exit and Take-off Process for Morphing Unmanned Submersible Aerial Vehicle[J]. 中国海洋工程:英文版, 2017, 31(2): 8
[3] 杨健, 冯金富, 齐铎, 等. 水空介质跨越航行器的发展与应用及其关键技术[J]. 飞航导弹, 2017(12): 1–8
[4] 刘安, 冯金富, 廖保全, 等. 旋翼类飞行潜航器的发展及关键技术[J]. 舰船科学技术, 2017(5): 1–6
LIU An, FENG Jin-fu, LIAO Bao-quan, et al. Progress and key technologies of multi-rotor unmanned aerial underwater vehicle[J]. Ship Science and Technology, 2017(5): 1–6
[5] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016(9): 152–157
HE Zhao-xiong, ZHENG Zhen-shan, MA Dong-li, et al. Development of foreign trans-media aircraft and its enlightenment to China[J]. Ship Science and Technology, 2016(9): 152–157
[6] 杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018(1): 102–114
[7] ALZU"BI H, MANSOUR I, RAWASHDEH O. Loon Copter: Implementation of a hybrid unmanned aquatic–aerial quadcopter with active buoyancy control[J]. Journal of Field Robotics, 2018.
[8] MAIA M M, SONI P, DIEZ F J. Demonstration of an aerial and submersible vehicle capable of flight and underwater navigation with seamless air-water transition[J]. Computer science, 2015.
[9] LIANG Jian-hong, YAO Guo-cai, WANG Tian-miao, et al. Wing load investigation of the plunge-diving locomotion of a gannet Morus inspired submersible aircraft[J]. Science China (Technological Sciences), 2014, 57(2): 390–402
[10] LU D, XIONG C, LYU B, et al. Multi-mode hybrid aerial underwater vehicle with extended endurance[C]// OCEANS - MTS/IEEE Kobe Techno-Oceans. 0.
[11] LU D, XIONG C, ZENG Z, et al. A multimodal aerial underwater vehicle with extended endurance and capabilities[C]// 2019 International Conference on Robotics and Automation (ICRA). School of Oceanography, Shanghai Jiao Tong University (SJTU), Shanghai, China, 2019.