随着海洋技术与装备的快速发展,对海上无人装备的作战能力提出更高要求。为了有效提高无人系统的跨域作战能力,亟需突破多模态跨域控制技术,实现多系统间的协同配合。基于上述背景,本文首先对国内外跨介质航行器的跨域控制技术进行梳理,并提出适用于仿生水-空跨介质航行器的两栖多模态切换控制技术和复杂海洋环境下的自抗扰控制技术。研究表明,该技术能够有效提升航行器跨域控制的鲁棒性与自抗扰能力。其次,初步设计与跨域控制技术相匹配的仿生水-空跨介质航行器软硬件系统,并论证航行器跨域控制系统的可行性。最后,对本文提出的控制技术进行总结分析,为新型水-空跨介质航行器的跨域控制技术研究提供新的思路。
With the rapid development of marine technology and equipment, higher requirements for the combat capability of unmanned equipment at sea has put forward. In order to effectively improve the cross-domain combat capability of unmanned systems, it is urgent to break through the multi-mode cross-domain control technology and realize the coordination among multiple systems. Based on the above background, this paper firstly summarizes the cross-domain control technology of cross-media vehicle at home and abroad, and proposes amphibious multi-mode switching control technology and active disturbance rejection control technology suitable for bionic water-air cross-domain vehicle in complex ocean environment. The research and analysis show that this technology can effectively improve the robustness and active disturbance rejection ability of vehicle cross - domain control. The software and hardware system matching the cross-domain control technology are preliminarily designed and the feasibility of the bionic water-air cross domain vehicle’s control system is demonstrated. Finally, the control technology proposed in this paper is summarized and analyzed, which provides a new idea for the research of cross domain control technology of new water air cross medium vehicle.
2023,45(20): 79-82 收稿日期:2022-7-27
DOI:10.3404/j.issn.1672-7649.2023.20.014
分类号:U674
基金项目:国家自然科学基金资助项目(12202010,U2141251, 11988102, 11872004, 91848201);青岛海洋科学与技术试点国家实验室山东省专项经费‘问海计划’项目(No.2021WHZZB2000)
作者简介:李宏源(1989-),男,博士,助理研究员,研究方向为微纳米力学、流固耦合力学、水下航行器减阻及跨介质技术
参考文献:
[1] 刘相知, 崔维成. 潜空两栖航行器的综述与分析_刘相知[J]. 中国舰船研究, 2019, 14(S2): 1–14
[2] 穆子豪, 陈玲, 韦浩, 等. 跨介质水空两栖航行器的设计研究[J]. 今日制造与升级, 2022(2): 38–40
[3] 杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018, 40(1): 102–114
[4] 冯金富, 胡俊华, 齐铎. 水空跨介质航行器发展需求及其关键技术[J]. 空军工程大学学报(自然科学版), 2019, 20(3): 8–13
[5] 杨健, 冯金富, 齐铎, 等. 水空介质跨越航行器的发展与应用及其关键技术[J]. 飞航导弹, 2017(12): 1–8,61
[6] ZENG Zheng, LYU Chenxin, BI Yuanbo, et al. Review of hybrid aerial underwater vehicle: Cross-domain mobility and transitions control[Z]: Elsevier BV: 110840.
[7] WEISLER W, STEWART W, ANDERSON MARK-B., et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments[Z]: Institute of Electrical and Electronics Engineers (IEEE): 969–982.
[8] 丁娃, 吴功平, 何文山, 等. 四旋翼飞行器姿态角的自切换串级PID控制方法[J]. 机械设计与制造, 2022(6): 208–213
[9] 时来富, 沈建新, 王启盛, 等. 四旋翼飞行器的模糊自抗扰姿态控制[J]. 机械制造与自动化, 2021, 50(3): 157–162
[10] 左丹. 基于频域模型的ADRC参数整定及其在精密控制中应用研究[D]. 北京: 中国科学院研究生院(光电技术研究所), 2016.
[11] 李述清, 张胜修, 刘毅男, 等. 根据系统时间尺度整定自抗扰控制器参数[J]. 控制理论与应用, 2012, 29(1): 125–129
[12] 黄一, 薛文超. 自抗扰控制: 思想、应用及理论分析[J]. 系统科学与数学, 2012, 32(10): 1287–1307