为了改善避障效果,获得具有较少拐点的最短避障路线,设计复杂开放水域的无人船避障路线蚁群规划算法。在复杂开放水域障碍物栅格化处理的基础上,基于蚁群算法基本原理,获取势场合力、目标点的位置信息相结合的综合启发信息,优化信息素浓度增量,改进状态转移概率,进行蚁群算法的改进处理,实现无人船避障路线规划。结果表明,该算法可实现无人船避障路线规划,设计的避障路线长度相比改进前降低了40.39%、拐点数减少60%。
In order to improve the obstacle avoidance effect and obtain the shortest obstacle avoidance route with fewer inflection points, an ant colony programming algorithm for ship obstacle avoidance route in complex open waters is designed. On the basis of the raster processing of obstacles in complex open waters, based on the basic principle of ant colony algorithm, the comprehensive heuristic information combining the potential force and the position information of the target point is obtained, the pheromone concentration increment is optimized, the state transition probability is improved, and the ant colony algorithm is improved to realize the obstacle avoidance route planning of ships. The experimental results show that the algorithm can realize the planning of ship obstacle avoidance route, and the length of the designed obstacle avoidance route is reduced by 40.39% and the number of inflection points is reduced by 60% compared with that before improvement.
2023,45(20): 101-104 收稿日期:2023-4-17
DOI:10.3404/j.issn.1672-7649.2023.20.019
分类号:U664.82
基金项目:河南省高等学校重点科研项目(22B520018;22B470007)
作者简介:陈改霞(1980-),女,硕士,副教授,研究方向为智能算法及应用及计算机应用
参考文献:
[1] 杨琪森, 王慎执, 桑金楠, 等. 复杂开放水域下智能船舶路径规划与避障方法[J]. 计算机集成制造系统, 2022, 28(7): 2030-2040.
Yang Qi-sen, Wang Shen-zhi, Sang Jin-nan, et al. Path planning and real-time obstacle avoidance methods of intelligent ships in complex open water environment[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2030-2040.
[2] 白响恩, 江明哲, 徐笑锋, 等. 基于双向搜索的改进蚁群算法的船舶路径规划[J]. 中国航海, 2022, 45(3): 13-20.
Bai Xiang’en, Jiang Ming-zhe, Xu Xiao-feng, et al. Ship route planning using improved ant colony algorithm with bi-directional search strategy[J]. Navigation of China, 2022, 45(3): 13-20.
[3] 殷绍伟, 彭力, 戴菲菲. 融合改进A~*蚁群和滚动窗口法的平滑路径规划[J]. 计算机科学与探索, 2021, 15(10): 1969-1979.
Yin Shao-wei, Peng Li, Dai Fei-fei. Smooth path planning by integrating improved A~* ant colony and rolling window method[J]. Computer Science and Exploration, 2021, 15(10): 1969-1979.
[4] 张子然, 黄卫华, 陈阳, 等. 基于双向搜索的改进蚁群路径规划算法[J]. 计算机工程与应用, 2021, 57(21): 270-277.
Zhang Zi-ran, Huang Wei-hua, Chen Yang, et al. Improved ant colony path planning algorithm based on bidirectional search[J]. Computer Engineering and Applications, 2021, 57(21): 270-277.
[5] 李清亮, 李彬, 孙国皓, 等. 基于精确罚函数的无人艇航迹规划和自动避障算法[J]. 中国舰船研究, 2021, 16(1): 89-95.
Li Qing-liang, Li Bin, Sun Guo-hao, et al. Trajectory planning and automatic obstacle avoidance algorithm for unmanned surface vehicle based on exact penalty function[J]. Chinese Journal of Ship Research, 2021, 16(1): 89-95.
[6] 吕进锋, 马建伟, 李晓静. 基于改进的随机路径图及和声算法的舰船航线规划[J]. 控制理论与应用, 2020, 37(12): 2551-2559.
Lv Jin-feng, Ma Jian-wei, Li Xiao-jing. Route planning based on improved probabilistic roadmap and harmony search[J]. Control Theory & Applications, 2020, 37(12): 2551-2559.
[7] 童帮裕, 胡坚堃. 基于改进蚁群算法的船舶冰区航行路径规划[J]. 中国航海, 2020, 43(1): 24-28.
Tong Bang-yu, Hu Jian-kun. Improved ant colony optimization for navigation path planning in ice zone[J]. Navigation of China, 2020, 43(1): 24-28.
[8] 马庆禄, 黄光浩. 基于改进人工势场法的自动驾驶路径规划方法[J]. 计算机仿真, 2022, 39(8): 160-165.
Ma Qing-lu, Huang Guang-hao. Automatic driving path planning based on improved artificial potential field method[J]. Computer Simulation, 2022, 39(8): 160-165.