为对磁性敏感的实验装置提供一个无磁干扰、具有一定深度以及姿态稳定的水下测试环境,设计一款基于经典比例积分微分(PID)算法控制的弱磁型四旋翼水下自主航行器。本文通过外形设计,对该自主航行器进行三维建模,从而建立该AUV的运动学模型,进行稳定性分析。通过电气系统以及控制系统的设计与组装,调整各控制参数,成功搭建该自主航行器并进行水池实验。通过实验可知,基于PID控制的弱磁型四旋翼水下自主航行器通过无浮力缆与上位机连接,可以实现定深以及定姿态的功能。同时将各个误差值控制在理想范围内,验证了该控制系统的稳定性以及鲁棒性。
In order to provide an underwater test environment with no magnetic interference, a certain depth and a stable attitude for the experimental device sensitive to magnetism, a weak magnetic four-rotor underwater autonomous vehicle based on the classic proportional integral derivative (PID) algorithm control is designed. In this paper, through the shape design, three-dimensional modeling of the autonomous vehicle, the kinematic model of the AUV is established and conduct its stability analysis. Through the design and assembly of the electrical system and the control system, the control parameters are adjusted to successfully build the physical object of the autonomous vehicle and the pool experiment. Through the experiment, it can be seen that the weak magnetic field-based four-rotor underwater autonomous vehicle based on PID control is connected to the upper computer through a buoyancy cable, which can realize the functions of depth and attitude determination. The error value is controlled within the ideal range, which verifies the stability and robustness of the control system.
2023,45(20): 105-110 收稿日期:2022-9-22
DOI:10.3404/j.issn.1672-7649.2023.20.020
分类号:TP319.56
作者简介:张宝泉(1998-),男,硕士研究生,研究方向为机电一体化、工程控制、水下航行器控制
参考文献:
[1] CHUTIA S, KAKOTY N M, DEKA D. A review of underwater robotics, navigation, sensing techniques and applications[M]//Proceedings of the Advances in Robotics. 2017: 1-6.
[2] Stojanovic M, Preisig J. Underwater acoustic communication channels: Propagation models and statistical characterization[J]. IEEE communications magazine, 2009, 47(1): 84–89
[3] STOJANOVIC M. Underwater wireless communications: Current achievements and research challenges[J]. IEEE Oceanic Engineering Society Newsletter, 2006, 41(2): 1–5
[4] ZHU Q, XIONG W, LIU H, et al. A brief review of underwater electric current communication[C]//2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2016: 465-469.
[5] LI J H, KIM M G, KANG H J, et al. Development of UUV platform and its control method to overcome strong currents: simulation and experimental studies[J]. IFAC-PapersOnLine, 2018, 51(29): 268–273
[6] SANTHAKUMAR M, ASOKAN T. Power efficient dynamic station keeping control of a flat-fish type autonomous underwater vehicle through design modifications of thruster configuration[J]. Ocean Engineering, 2013, 58: 11–21
[7] KOH T H, LAU M W S, SEET G, et al. A control module scheme for an underactuated underwater robotic vehicle[J]. Journal of Intelligent and Robotic Systems, 2006, 46(1): 43–58
[8] SERRANI A. Robust station-keeping of underwater vehicles under velocity measurement offsets[J]. IFAC Proceedings Volumes, 2004, 37(10): 333–338
[9] SANTHAKUMAR M, ASOKAN T. Power efficient dynamic station keeping control of a flat-fish type autonomous underwater vehicle through design modifications of thruster configuration[J]. Ocean Engineering, 2013, 58: 11–21
[10] CROUSE G. Conceptual design of a submersible airplane[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010: 1012.
[11] BIAN J, XIANG J. QUUV: A quadrotor-like unmanned underwater vehicle with thrusts configured as X shape[J]. Applied Ocean Research, 2018, 78: 201–211
[12] SUAREZ FERNANDEZ R A, PARRA R, ANDRES E, et al. Nonlinear attitude control of a spherical underwater vehicle[J]. Sensors, 2019, 19(6): 1445
[13] FOSSEN T I. Guidance and control of ocean vehicles[M]. New York: Wiley, 1994.
[14] SNAME T. Nomenclature for treating the motion of a submerged body through a fluid[J]. The Society of Naval Architects and Marine Engineers, Technical and Research Bulletin No, 1950: 1–5.
[15] 王晓鸣, 张宏伟, 王树新. 基于模糊控制的水下自航行器着陆策略分析[J]. 机械工程学报, 2009, 45(3): 84–88
[16] 高俊, 王鹏, 侯中喜. 基于改进PID算法的无人机变速度控制[J]. 华中科技大学学报(自然科学版), 2015, 43(S1): 1–5
GAO J, WANG P, HOU ZhongX. UAV velocity control based on improved PID algorithm[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2015, 43(S1): 1–5
[17] 王玉甲, 张铭钧, 金志贤. 水下机器人传感器及推进器状态监测系统[J]. 机械工程学报, 2006, 42(S1): 214–218.
[18] 陈文科, 高艳雯, 陈志, 等. 模糊PID控制在万向电动底盘上的应用. 机械工程学报, 2014, 50(6): 129-134.
CHEN W K, GAO Y W, CHEN Z, WANG Z. Application of fuzzy-PID controller in electic chassis featured by mecanum wheel[J]. Journal of Mechanical Engineering, 2014, 50(6): 129-134.