噪声在水下传播速度更快,幅值更大,随着水下声学探测技术的快速进步,水下推进场合对推进电机运行时振动噪声性能要求更高。本文首先通过对电机的电磁力波和定子结构模态的计算,分析推进电机在定子铁心的共振特性。然后有限元谐响应联合仿真分析定子表面振动和噪声辐射特性,发现水下噪声的幅值主要由于电机0阶和2阶力波产生,因而在设计抑制噪声的机壳时,重点抑制0阶和2阶共振的噪声幅值。最后设计了较优径向厚度15 mm的电机机壳,声压级降低了29 dB。经实际样机在消声水池测试,辐射噪声最大声压级为125 dB,在100~5000 Hz频带内测试结果最大声压级115 dB左右,与分析结果基本吻合,为水下推进电机振动噪声的分析和抑制提供了参考。
With the rapid progress of underwater acoustic detection technology, the vibration and noise performance of underwater propulsion motor is required to be higher. Firstly, through the calculation of the electromagnetic force wave and the stator structure mode of the motor, the resonance characteristics of the propulsion motor in the stator core are analyzed. Then the finite element harmonic response joint simulation analyzes the stator surface vibration and noise radiation characteristics. It is found that the amplitude of underwater noise is mainly caused by the 0-order force wave and the 2-order resonance of the motor. Therefore, when designing the enclosure to suppress noise, the noise amplitude of the 0-order and 2-order resonance should be suppressed. At last, the motor casing with a better radial thickness of 15 mm is designed, and the sound pressure level is reduced by 29 dB. After the actual prototype is tested in the silencing tank, the maximum sound pressure level of radiated noise is 125 dB, and the maximum sound pressure level is about 115 dB in the frequency band of 100~5000 hz, which is basically consistent with the analysis results, providing a reference for the analysis process and suppression emphasis of underwater propulsion motor vibration and noise.
2023,45(20): 167-171 收稿日期:2022-8-23
DOI:10.3404/j.issn.1672-7649.2023.20.031
分类号:U664.3
基金项目:宁波市科技创新2025重大专项(2020Z067)(2021Z125)
作者简介:高云鹏(1987-),男,硕士,工程师,研究方向为永磁电机设计与振动噪声抑制
参考文献:
[1] LIN F, ZUO S, DENG W, et al. Modeling and analysis of electromagnetic force, vibration, and noise in permanent-magnet synchronous motor considering current harmonics[J]. IEEE Transactions on Industrial Electronics, 2016, 63(12): 7455–7466
[2] WU S. Vibroacoustic prediction and mechanism analysis of claw pole alternators[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4463–4473
[3] PARK S. A numerical prediction model for vibration and noise of axial flux motors[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5757–5762
[4] RICK S, PUTRI A K, FRANCK D, et al. Hybrid acoustic model of electric vehicles: force excitation in permanent-magnet synchronous machines[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 2979–2987
[5] ZUO S, LIN F, WU X. Noise analysis, calculation, and reduction of external rotor permanent-magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6204–6212
[6] LIN F, ZUO S, DENG W, et al. Modeling and Analysis of Acoustic Noise in External Rotor In-Wheel Motor Considering Doppler Effect[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4524–4533
[7] 兰华. 永磁同步电机的电磁力波与电磁振动研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[8] 于慎波, 王辉. 电机定子圆柱壳体周向模态频率计算[J]. 电机与控制学报, 2014, 18(6): 102–107
[9] 张贤彪, 王东, 苏振中. 大型分体式磁轴承电动机系统定子模态分析[J]. 机械工程学报, 2016, 52(8): 1–7
[10] 谢颖, 王严, 吕森, 等. 小型异步电机模态计算与试验分析[J]. 电工技术学报, 2015, 30(16): 1–9
[11] YANG, S. Low-noise electrical motors; Clarendon Press: Oxford, UK, 1981.
[12] 王倩营, 卢俊文, 舒涛. 非晶合金永磁电机的电磁振动噪声计算与分析[J]. 机电工程, 2019, 36(7): 695–700
[13] 陈永校, 诸自强, 应善成. 电机噪声的分析和控制[M]杭州: 浙江大学出版社, 1987.