极地船舶航行于夏季冰缘区时,浮碎冰况是遭遇的最主要冰况之一,在此冰况下航行的船舶必须考虑浮碎冰与水的耦合作用对阻力性能的影响。为探索浮碎冰条件下极地船舶阻力性能的模型试验方法及浮碎冰对船舶阻力的影响规律,利用非冻结模型冰开展某型破冰船在不同速度、密集度下的极地船舶阻力试验,同时利用数字图像识别方法,观测不同密集度情况下的碎冰分布变化。试验结果表明:船舶的碎冰阻力随着速度与密集度增加逐渐增加,航行速度为主要的影响因素;船舶速度对碎冰的运动具有显著影响;船舶与碎冰的作用具有随机性,同一工况下的阻力在一定的范围内波动。在此基础上,利用IOT实船换算方法,对船舶在不同航速及密集度下的碎冰阻力进行了预报。
When the ice-going ship sails in the margin ice zone in summer, the pack ice condition is one of the most important ice conditions encountered. Ships sailing in this ice condition must consider the influence of the coupling effect of the floating ice and water on the resistance performance. In order to explore the model test method of the resistance performance of the icebreaker ship under the condition of floating ice and the influence of the floating ice on the ship′s resistance, the non-frozen model ice was used to carry out a certain type of icebreaker at different speeds and different ice density, and the distribution changes of crushed ice under different concentration conditions were observed by means of digital image recognition method. The test results show that: the resistance of the ship′s brash ice increases gradually with the increase of speed and density, and the sailing speed is the main factor; the ship′s speed has a significant impact on the movement of the brash ice; the effect of the ship and the brash ice is random, and the same work, the resistance under conditions fluctuates within a certain range. On this basis, using the IOT real ship conversion method, the debris ice resistance of ships at different speeds and density is predicted.
2023,45(21): 20-25 收稿日期:2022-8-16
DOI:10.3404/j.issn.1672-7649.2023.21.004
分类号:U661.229
基金项目:国家自然科学基金资助项目(52192690,52192694,52101331);高新技术船舶项目(高技术船舶[2021]342 号)
作者简介:刚旭皓(1994-),男,工程师,研究方向为冰区船和冰水池试验
参考文献:
[1] SCHULTZ I A, FREE A P. Recent experience in conducting ice model tests using a synthetic ice modeling material[C]. Proceedings of IAHR Ice Symposium, 1984, 2: 229-239.
[2] BELMOS S, WONG J, MOODY W. A model material for n river ice breakup studies[C]. Proceedings of the IAHR 10th International Symposium on Ice, 1990, 1: 575-585.
[3] SAMAMURA J, IMAKI K, SHIRAISHI T, et al. Ice Resistance test of a ship using synthetic ice in small pack ice floes and wave interactions[C]//Proceedings of the Twenty-eighth (2018) International Ocean and Polar Engineering Conference, Sapporo, 2018, 10-15.
[4] 郭春雨, 李夏炎, 谢畅, 等. 冰区航行船舶阻力预报方法[J]. 哈尔滨工程大学学报, 2015, 36(7): 899-905
[5] 王习建, 赵桥生, 潘子英, 等. 冰水混合环境下船舶操纵性回转试验研究[J]. 中国造船, 2022, 63(1): 237-244
[6] LEE S G, LEE J S, BEAK T H. Structural safety assessment in membrane-type CCS in LNGC under iceberg collisions[J]. ICSOT, 2009.
[7] WANG J, DERR ADJI-AOUAT A. Ship performance in bro-ken ice floes-Preliminary numerical simulations. TR-2010-24[R]. National research council, 2010.
[8] KIM M C, LEE S K, LEE W J, et al. Numerical and exper-imental investigation of the resistance performance of an ice breaking cargo vessel in pack ice conditions[J]. Interna-tional journal of naval architecture and ocean engineering, 2013, 5(1): 116-131
[9] 郭春雨, 李夏炎, 王帅, 等. 冰区航行船舶碎冰阻力预报数值模拟方法[J]. 哈尔滨工程大学学报, 2016, 37(20): 145-150+156.
[10] COLBOURNE D B. Scaling Pack Ice and Iceberg Loads on Moored Ship Shapes[J]. Oceanic Engineering International, 2000, 4(1): 39-45
[11] ITTC-Recommended Procedures and Guidelines-Testing and Extrapolation Methods Ice Testing Manoeuvring Tests in Ice.