为研究间距比和倒角半径对并列不等直径柱体绕流水动力特性的影响,采用大涡模拟(LES)方法,数值模拟3种间距比L/D和5种倒角半径R+并列布置不等直径柱体的三维流场。验证数值方法的准确性,分析柱体后方受力特性、瞬时流场和时均流场的变化情况。结果表明:倒角变化能改善柱体剪切层的分离发展,同时减小柱体所受的阻力和升力,随着R+的增大,3种L/D下大柱的Cd-ave和Cl-rms总体呈现出减小趋势,最大降幅分别为38.6%和92.3%。L/D变化对柱体后方流场和尾流形态有较大影响,随着L/D的增大依次观察到两柱体后方的2种尾流形态,即偏斜流态和双涡脱落流态。研究结果可为相关工程设计根据不同影响因素选取合适的倒角柱体提供参考。
To study the effects of spacing ratio and rounded corner radius on the hydrodynamic characteristic of flow around two parallel cylinders with unequal diameters, the three-dimensional flow field of the two cylinders with three spacing ratios and five rounded corner radii was numerically simulated by using the large eddy simulation (LES) method. The accuracy of this numerical method was validated, and the variation of hydrodynamic characteristics, instantaneous flow field and time-averaged flow field of the cylinders were analyzed. The roundness can improve the separation development of the shear layers, while reducing the drag and the lift forces on the cylinders. As the R+ increases, the Cd-ave and Cl-rms of the larger cylinder at all L/D show a decreasing trend and the maximum decrease is 38.6% and 92.3%, respectively. The L/D has a significant effect on the wake pattern and the flow field behind the cylinders. Two wake patterns behind the two cylinders are observed with increasing of L/D, that is skewed flow pattern and double vortex shedding flow pattern. The results can provide a reference for relevant engineering designs to select suitable rounded corner cylinders according to different influencing factors.
2023,45(21): 26-31 收稿日期:2022-12-1
DOI:10.3404/j.issn.1672-7649.2023.21.005
分类号:TV143
基金项目:国家自然科学基金资助项目(51739010)
作者简介:于定勇(1964-),男,博士,教授,研究方向为海洋动力与结构物和岸滩作用
参考文献:
[1] 于定勇, 赵建豪, 黄东燕, 等. 不同倒角半径柱体绕流数值模拟及水动力特性分析[J]. 海洋工程, 2018, 36(5): 1-11
[2] 杜晓庆, 刘延泰, 施定军, 等. 低雷诺数下类方柱绕流的数值模拟研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(5): 49-57
[3] HU J C, ZHOU Y, DALTON C. Effects of the corner radius on the near wake of a square prism[J]. Experiments in Fluids, 2006, 40(1): 106-118
[4] KUMAR R A, SOHN C H, GOWDA B H L. Influence of corner radius on the near wake structure of a transversely oscillating square cylinder[J]. Journal of Mechanical Science and Technology, 2009, 23(9): 2390-2416
[5] ABDELHAMID T, ALAM M M, ISLAM M. Heat transfer and flow around cylinder: Effect of corner radius and Reynolds number[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121105
[6] YANG K, CHENG L, AN H, et al. The effect of a piggyback cylinder on the flow characteristics in oscillatory flow[J]. Ocean Engineering, 2013, 62: 45-55
[7] DALTON C, XU Y, OWEN J C. The suppression of lift on a circular cylinder due to vortex shielding at moderate Reynolds number[J]. Journal of Fluids and Structures, 2001, 15(3−4).
[8] YOKOI Y, HIRAO K. Vortex shedding and vortex formation from a pair of in-line forced oscillating parallel arranged two circular cylinders[J]. Journal of Fluid and Science and Technology, 2009(4): 401-14
[9] 高洋洋. 多柱体系统静止绕流与涡激振动的试验及数值研究[D]. 青岛: 中国海洋大学, 2011.
[10] 毕贞晓. 不等直径并列双圆柱绕流的受力分析和湍流特性研究[D]. 上海: 上海应用技术学院, 2015.
[11] 张艺鸣, 罗良, 陈威等. 不等直径并列双圆柱绕流数值模拟研究[J]. 舰船科学技术, 2021, 43(9): 48-52
[12] SMAGORINSKY J. General circulation experiments with the primitive equations: I. The basic experiment[J]. Mon. Wea. Rev. 1963, 91.
[13] 贾晓荷. 单圆柱及双圆柱绕流的大涡模拟[D]. 上海: 上海交通大学, 2008.
[14] 郭雷. 斜侧体三体船阻力计算及构型研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
[15] 于定勇, 康骁, 赵建, 豪. 不同倒角半径四柱体绕流数值模拟及水动力特性分析[J]. 海洋工程, 2021, 39(1): 1-11
[16] WORNOM S, OUVRARD H, SALVETTI M V, et al. Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects[J]. Computers and Fluids, 2011, 47(1): 44-50
[17] 战庆亮, 周志勇, 葛耀君. Re=3900圆柱绕流的三维大涡模拟[J]. 哈尔滨工业大学学报, 2015, 47(12): 75-79
[18] SUMNER D, WONG S S T, PRICE S J, et al. Fluid behavior of side-by-side circular cylinders in steady cross-flow[J]. Journal of Fluids and Structures, 1999, 13(3): 309-338
[19] LYSENKO D A, Ertesvåg I S, Rian K E. Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox[J]. Flow Turbulence & Combustion, 2012, 89(4): 491-518
[20] LOURENCO L M, SHIT C. Characteristics of the plan turbulent near wake of a circular cylinder: A partical image velocimetry study[R]. Private Communication, 1993.
[21] HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows [J]. Center for Turbulence Research CTR-S 88, 1988.