自主水下航行器(Autonomous Underwater Vehicle,AUV)在海洋工程、海洋科考以及军事活动中发挥着越来越重要的作用,能源补给和信息交换是影响AUV作业时长和作业效率的2个主要因素。受自身携带能源和水下环境的制约,AUV的能源补给和信息交换一般需将其回收至母船后进行。母船释放回收过程作业强度高、危险性大,极大限制了AUV的工程化应用。水下对接技术为AUV在水下完成能源补给和信息交换创造了条件,规避了AUV布放回收过程自动化程度低、风险高、隐蔽性差等问题,近年来成为水下机器人研究领域的热点。面向多海洋平台协同的动态水下对接技术受对接区域限制更少,对环境要求更低,在降低人员成本的基础上更具灵活性。在分析国内外动态水下对接技术在多类平台上应用情况的基础上,详细介绍一种AUV之间的水下动态对接系统,对其系统组成特点展开论述,并分析其湖上验证结果,总结动态水下对接技术在传感器数据处理、控制策略、抗水动力干扰等自主方面的关键技术,最后对整体技术的发展提出展望。
The underwater docking technology of autonomous underwater robots can solve the problems of low automation and poor concealment in the process of AUV deployment and recovery and energy transfer,which has become a hot issue in the field of underwater robotics in recent years. The UAV dynamic docking technology for the direction of multi-ocean platform cooperation is less restricted by the region, has low docking environment requirements,and is more flexible on the basis of reducing personnel costs. Based on the analysis of underwater dynamic docking applications of various platforms at home and abroad,the AUV docking system is introduced from the perspectives of "unmanned" and "stealth",and the characteristics of its system components are discussed. The results of lake and sea validation are analyzed,the characteristics of dynamic docking are summarized,and the future development direction of the overall technology is proposed.
2023,45(21): 97-103 收稿日期:2022-8-11
DOI:10.3404/j.issn.1672-7649.2023.21.018
分类号:TP242.6
基金项目:基础科研项目(E01Z0916; E01Z0916)
作者简介:刘菲菲(1988-),女,工程师,研究方向为机器人水下对接技术
参考文献:
[1] 郑荣, 宋涛, 孙庆刚, 等. 自主式水下机器人水下对接技术综述[J]. 中国舰船研究, 2018, 13(6): 42-49+65ZHENG Reng, SONG Tao, SUN Qing Gang, et al. Review on underwater docking technology of AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 42-49+65
[2] 燕奎臣, 吴利红. AUV水下对接关键技术研究[J]. 机器人, 2007(3): 267-273YAN Kuichen, WU Lihong. AUV underwater docking key technology research[J]. Robot, 2007(3): 267-273
[3] 孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1-11SUN Yeyi, WU Haowei, LI Ye, et al. Summary of AUV underwater recycle docking technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 1-11
[4] Singh H, James G. Docking for an autonomous ocean sampling net-work[J]. IEEE Journal of Oceanic Engineering, 2001, 26(44): 498-514
[5] 吴俊豪. AUV电磁导引回坞系统研究与设计[D]. 杭州: 杭州电子科技大学, 2019.
[6] 曹和云, 倪先胜, 何利勇, 等. 国外潜载UUV布放与回收技术研究综述[J]. 中国造船, 2014, 55(2): 200-208CAO He-yun, NI Xian-sheng, HE Li-yong, et al. Review of overseas Research on SUBMARINE UUV Deployment and Recovery Technology[J]. Shipbuilding of China, 2014, 55(2): 200-208
[7] 曾勇. UUV布放回收技术[J]. 水雷战与舰船防护, 2015, 23(1): 13-16ZENG Yong. UUV layout recovery technology[J]. Mine Warfare and Ship Protection, 2015, 23(1): 13-16
[8] 陈强, 孙嵘. 潜艇布放回收UUV方式[J]. 舰船科学技术, 2011, 33(7): 145-149Chen Qiang, SUN Rong. UUV recovery method of submarine distribution[J]. Ship Science and Technology, 2011, 33(7): 145-149
[9] PAWLING R G, ANDREWS D J. A submarine concept design-the submarine as an UXV mothership [C]// Proceedings of Warship 2011: Naval Submarines and UUVs, 29-30 June, Bath, UK.
[10] WATT G D, CARRETERO J A, et al. Towards an automated active UUV dock on a slowly moving submarine[C]// Proceedings of Warship 2011: Naval Submarines and UUVs, 29-30 June, Bath, UK.
[11] BRUNEAU D. Autonomous underwater vehicle deployment and recovery concepts for submarines[C]// UDT 2009, Europe.
[12] WALTL B. The ATLAS AUV roadmap[C]//UDT Hamburg 2010.
[13] SCHONING M. Variable modular configuration of superstructure[C]//UDT, Europe, 2009.
[14] 钱东. 美国未来的大型UUV—MANTA[J]. 鱼雷技术, 2003, (1).QIAN Dong. Future large UUV-MANTA in the United States [J]. Torpedo Technology, 2003, (1).
[15] SIRMALIS J E. Pursuing the MANTA vision: recent at-sea technology demonstration results[C]// UDT, 2001.
[16] HARDY T, BARLOW G. Unmanned underwater vehicle deployment and retrieval considerations for submarines[C]//INEC 2008, Hamburg, Germany.
[17] MOODY P E. Underwater vehicle recovery system: US. Patent NO. US005447115[P].
[18] 周杰. 潜用UUV回收技术[J]. 四川兵工学报. 2011: 45-47(8).ZHOU Jie. Recovery technology of latent UUV [J]. Journal of Sichuan Ordnance Engineering, 2011: 45-47(8).
[19] LI Jihong. Study on the UUV operation via conventional submarine’s torpedo tube[J]. Journal of the Korea Institnte of Military Science and Technology, 2014, 17(1): 33-40
[20] STEWART M S, PAVLOS J. A means to networked persistent undersea surveillance (U) [C]//STS 2006, SESSION V (STEWART). The unraveling and revitalization of U. S navy antisubmarine warfare[J]. Naval War College Review, 2005, 58(2).
[21] 郝启. 水面机器人自主回收AUV装置结构设计及研究[D]. 沈阳: 沈阳理工大学, 2018.
[22] 徐会希, 姜成林. 基于USV与AUV异构平台协同海洋探测系统研究综述(英文)[J]. 中国科学院大学学报, 2021, 38(2): 145-159XU Huixi, JIANG Chenglin. A review of collaborative ocean exploration system based on USV and AUV heterogeneous platforms[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(2): 145-159
[23] 潘光, 黄明明, 宋保维, 等. AUV回收技术现状及发展趋势[J]. 鱼雷技术, 2008, 16(6): 10-14PAN Guang, HUANG Ming-ming, SONG Bao-wei, et al. Current situation and development trend of AUV recovery technology[J]. Torpedo Technology, 2008, 16(6): 10-14
[24] 杜俊, 谷海涛, 孟令帅, 等. 面向USV的AUV自主回收装置设计及其水动力分析[J]. 工程设计学报, 2018, 25(1): 35-42DU Jun, GU Hai-tao, MENG Ling-shuai, et al. Design and hydrodynamic analysis of AUV autonomous recovery device for USV[J]. Chinese Journal of Engineering Design, 2018, 25(1): 35-42
[25] 孟令帅, 林扬, 谷海涛, 等. 回转形AUV水下通用对接装置的设计与实现[J]. 工程设计学报, 2017, 24(4): 387-394.MENG Ling-shuai, LIN Yang, GU Hai-tao, et al. Design and implementation of a rotating AUV underwater universal docking device. Journal of engineering design, 2017, 24(4): 387-394.
[26] 张海亭. 面向USV自主回收AUV的拖曳装置研究[D]. 沈阳: 东北大学, 2018.
[27] 苏翔. 基于机器视觉的海洋无人系统对接回收技术研究[D]. 武汉: 华中科技大学, 2021.
[28] 陈佳伦, 谷海涛, 林扬, 等. 面向一体化系统的USV水面回收AUV的水动力特性分析[J]. 舰船科学技术, 2020, 42(5): 77-84CHEN Jia-lun, GU Hai-tao, LIN Yang, et al. Analysis of hydrodynamic characteristics of USV surface recovery AUV for integrated system[J]. Ship Science and Technology, 2020, 42(5): 77-84
[29] 冀大雄, 任申真, 胡志强. 弱通信条件下USV对AUV的自主跟踪控制研究[J]. 科学通报, 2013, 58(S2): 49-54.JI Daxiong, REN Shenzhen, Research on autonomous tracking control of USV to AUV under weak communication conditions. HU Zhiqiang. Chinese Science Bulletin, 2013, 58(S2): 49-54.
[30] 宋涛. 基于无人水面艇的水下拖曳体自主收放装置设计与研究[D]. 沈阳: 东北大学, 2020.
[31] 黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215-231HUANG Yan, LI Yan, YU Jian-cheng, et al. Intelligent AUV current situation and trend of development[J]. Robot, 2020, 42(2): 215-231
[32] 郑荣, 辛传龙, 汤钟, 等. 无人水面艇自主部署自主水下机器人平台技术综述[J]. 兵工学报, 2020, 41(8): 1675-1687.ZHENG Rong, XIN Chuan-long, TANG Zhong, et al. Overview of autonomous deployment of autonomous underwater robot platform technology for unmanned surface craft. Acta Armamentarii, 2020, 41(8): 1675-1687.
[33] 国婧倩, 郑荣, 吕厚权, 等. AUV水下对接装置的实现及试验[J]. 舰船科学技术, 2019, 41(5): 78-82.GUO Jing-qian, ZHENG Rong, LU Hou-quan, et al. Implementation and testing of AUV underwater docking device. Ship Science and Technology, 2019, 41(5): 78-82.
[34] 郑荣, 吕厚权, 于闯, 等. AUV与自主移动坞站对接的技术研究及系统设计实现[J]. 机器人, 2019, 41(6): 713-721ZHENG Rong, LU Hou-quan, YU Chuang, et al. AUV with autonomous mobile dock docking technology research and the realization of system design[J]. Robot, 2019, 41(6): 713-721
[35] 崔正. 海底作业AUV回收方式的研究[J]. 科技文档, 239.CUI Zheng. Research on recovery method of AUV in subsea Operation[J]. Science and Technology Document, 2019(3): 239.
[36] PALOMERAS N, PENALVER A, MASSO-TCAMPOS M, et al. I-AUV docking and panel intervention at sea[J]. Sensors, 2016, 16(10): 1673
[37] CRUZ N A, MATOS A C, ALMEIDA R M, et al. A lightweight docking station for a hovering AUV[C]//2017IEEE Underwater Technology(UT). Busan, South Kore-a: IEEE, 2017: 1-7
[38] 杨超, 张铭钧, 吴珍臻, 等. 作业型水下机器人纵、横倾姿态自适应区域控制方法[J]. 机器人, 2021, 43(2): 224-233YANG Chao, ZHANG Ming-jun, WU Zhen-zhen, et al. Longitudinal and lateral tilting gesture operation type underwater robot adaptive zone control method[J]. Robot, 2021, 43(2): 224-233
[39] 高伟, 李天辰, 谷海涛, 等. 深海AUV无动力下潜运动特性研究[J]. 机器人, 2021, 43(6): 674-683GAO Wei, LI Tian-chen, GU Hai-tao, et al. Deep-sea AUV unpowered diving movement characteristics study[J]. Robot, 2021, 43(6): 674-683