针对UUV拖曳线阵航速较慢,在遇到海流或航向机动进行左右舷分辨时,线阵阵形畸变现象导致的测向精度变化问题,通过采用Ablow和Schechter提出的缆索偏微分控制方程组对拖曳线阵的阵形变化进行数值求解,采用经典的波束形成方法获得拖曳线阵声呐发生阵形畸变后的波束响应曲线,对海流导致的线阵偏航、UUV航向机动导致的线阵畸变现象引起的波束响应变化进行仿真分析。结果表明:在稳定的侧向海流作用下,线阵发生偏转但基本维持直线型阵列,对目标方位的估计精度影响较小,但线阵探测获得的目标方位与目标相对UUV航向的方位有稳定偏差角度(线阵方向与UUV方向的夹角),无法解决左右舷模糊的问题。在UUV进行航向机动时,线阵发生畸变弯曲,波束主瓣有所变宽,一定程度增加了目标方位估计的误差,但可获得对镜像源较好的抑制效果,实现了对目标的左右舷分辨。
Aiming at the problem of direction finding accuracy change caused by the distortion phenomenon of the line array when encountering the ocean current or heading maneuver to resolve the left and right sides of the UUV towed linear array, the formation change of the towed linear array was numerically solved by using the cable partial differential control equation system proposed by Ablow and Schechter, and the beam response curve after formation distortion of the towed line array sonar was obtained by the classical beamforming method, and the line array yaw caused by the sea current. The results show that under the action of stable lateral ocean currents, the linear array is deflected but basically maintains a linear array, which has little impact on the estimation accuracy of the target azimuth, but the target azimuth obtained by linear array detection has a stable deviation angle (the angle between the linear array direction and the UUV direction) between the target orientation and the UUV direction, which cannot solve the problem of left and right side blurring. When the UUV performs heading maneuver, the linear array is distorted and bent, and the main lobe of the beam becomes wider, which increases the error of target azimuth estimation to a certain extent, but a good suppression effect on the mirror source can be obtained, so as to achieve the left and right port resolution of the target.
2023,45(21): 110-114 收稿日期:2023-4-13
DOI:10.3404/j.issn.1672-7649.2023.21.020
分类号:U674.7
基金项目:国家重点研发计划(2021YFC2802300)
作者简介:陈伟(1988-),男,硕士,工程师,研究方向为水下无人系统测试控制技术
参考文献:
[1] 李佳橦, 陈强, 王连文. 国外UUV拖曳声呐试验情况分析[J]. 舰船科学技术, 2016(10): 4LI Jia-tong, CHEN Qiang, WANG Lian-wen. Analysis of UUV towed array experiments[J]. Ship Science and Technology, 2016(10): 4
[2] MAGUER A, DYMOND R, MAZZI M, et al. SLITA: A new slim towed array for AUV applications[J]. Journal of the Acoustical Society of America, 2008, 123(5): 3005
[3] MAGUER A, DYMOND R, GUERRINI P, et al. Receiving and transmitting acoustic systems for AUV/gliders[J]. 2009.
[4] 何心怡, 蒋兴舟, 李启虎, 等. 拖线阵的阵形畸变与左右舷分辨[J]. 声学学报, 2004, 29(5): 5HE Xinyi, JIANG Xingzhou, LI Qihu, et al. The array shape distortion of towed line array and port/starboard discrimination[J]. Acta Acustica, 2004, 29(5): 5
[5] 翟昌宇, 卢中新. 拖曳线阵声呐噪声测向方法及误差分析[J]. 舰船科学技术, 2023, 45(3): 106-110ZHAI Chang-yu, LU Zhong-xin. Noise direction finding algorithm and error analysis of towed linear array sonar[J]. Ship Science and Technology, 2023, 45(3): 106-110
[6] GERSTOFT P, HODGKISS W S, KUOERMAN W A, et al. Adaptive beamforming of a towed array during a turn[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 44-54
[7] ABLOW C M, SCHECHTER S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering, 1983, 10(6): 443-457
[8] 叶凡滔. 水下拖曳线阵动力学分析[D]. 北京: 中国舰船研究院, 2017
[9] 付薇. 水下航行器拖曳系统运动仿真研究[D]. 北京: 中国舰船研究院, 2015.
[10] 王飞. 海洋勘探拖曳系统运动仿真与控制技术研究[D]. 上海: 上海交通大学, 2007.
[11] ZHANG C, ZHANG H, ZHANG Y, et al. Parameter identification of hybrid-driven underwater glider based on differential evolution algorithm[C]// International Conference on Artificial Intelligence and Electromechanical Automation, IEEE, 2021.