研究塔柱和风机布置位置对半潜式浮式风机系统动力性能的影响。以OC4-deepCwind浮式风机参数为例,将塔柱和风机分别布置在半潜式浮式基础的中心和其三角形浮筒上,建立浮式风机系统动力学模型,计算不同工况下系统的动力响应。结果表明,塔柱和风机由基础中心调到其浮筒上后,浮式基础运动、机舱加速度、叶片气动力及系缆力的平均值变化不大,标准差有显著的增加;特别在极限工况,机舱X向加速度、叶片气动力的标准差增加近1倍,首摇超过5°,1号缆受力的标准差增加约30%。实际设计中,综合考虑浮式风机系统动力性能、安装和运输过程的便利性及结构强度等设计塔柱和风机位置。
The influence of tower and Floating offshore wind turbines position on dynamic performance of semi-submersible floating wind turbines system was studied. Taking the parameters of OC4-DEEPCWIND floating wind turbine as an example, the tower and wind turbine were arranged on the center of the semi-submersible floating foundation and its triangular floating buoy respectively, and the dynamic model of the floating wind turbine system was established, and the dynamic response of the system under different working conditions was calculated. The results show that the mean values of floating foundation motion, nacelle acceleration, blade aerodynamic force and mooring force change little, but the standard deviation increases significantly after the tower and wind turbine are transferred from the foundation center to the floating buoy. Especially in the extreme conditions, the standard deviation of X direction nacelle acceleration and blade aerodynamic force increases by nearly one time, yaw exceeds 5 degrees, and the standard deviation of no. 1 cable force increases by about 30%. In the actual design, the dynamic performance of the floating wind turbine system, the convenience of installation and transportation, and the structural strength of the design tower and wind turbine position are considered comprehensively.
2023,45(21): 125-131 收稿日期:2022-9-7
DOI:10.3404/j.issn.1672-7649.2023.21.023
分类号:U662.2
作者简介:杨礼东(1987-),男,硕士,高级工程师,研究方向为电力工程设计
参考文献:
[1] BULDER B H, VAN HEES M T, HENDERSON A, et al. Study to feasibility of and boundary conditions for floating offshore wind turbines[R]. 2002.
[2] ROBERTSON A N, JONKMAN J M. Loads analysis of several offshore floating wind turbine concepts[J]. Office of Scientific & Technical Information Technical Reports, 2011.
[3] 肖昌水. 海上浮式风机气动载荷及刚—柔耦合动力响应研究[D]. 天津: 天津大学, 2018.
[4] 刘周. 三种典型半潜式浮式风机基础水动力性能比较分析[D]. 广州: 华南理工大学, 2020.
[5] Thanh Toan Tran, Dong-Hyun Kim. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach[J]. Renewable Energy, 2016, 92.
[6] Wang K , Luan C , Moan T , et al. Comparative Study of a FVAWT and a FHAWT with a Semi-submersible Floater[C]. International ocean and polar engineering conference. 0.
[7] 张培智. 风浪耦合下的半潜式风机动力响应及塔基结构强度研究[D]. 江苏科技大学, 2021.
[8] 刘利琴, 肖昌水, 郭颖. 海上浮式水平轴风力机气动特性研究[J]. 太阳能学报, 2021, 42(01): 294-301
[9] 王涵. 浮式风机动力响应模型试验与数值计算对比研究[D]. 导师: 胡志强. 上海交通大学, 2019.
[10] Robertson A, Jonkman J, Masciola M, et al. Definition of the semisubmersible floating system for phase II of OC4[J]. Offshore Code Comparison Collaboration Continuation (OC4) for IEA Task, 2012, 30.