为了研究燃气轮机在水下非接触爆炸冲击载荷作用下的抗冲击能力,以燃气轮机中的重要部件压气机为抗冲击数值模拟研究对象,利用商用软件Hyper Mesh开展压气机的有限元建模,并对原始模型进行简化。将有限元模型导入Abaqus软件,通过模态计算验证简化模型的合理性,利用正负三角波分别从垂向、横向和纵向作为冲击载荷输入,基于显示求解器对压气机开展抗冲击能力的时域计算和分析,得到压气机部件在冲击环境下的薄弱环节。结果表明,压气机的垂向冲击响应远大于其他2个方向的冲击响应;支架是压气机结构的抗冲击薄弱环节;动叶片在垂向冲击的作用下和机匣之间没有发生碰撞的现象。所得结论可以为压气机抗冲击试验提供思路。
In order to study the impact resistance of gas turbine under underwater non-contact explosive impact load, the compressor, an important component of gas turbine, was taken as the object of numerical simulation to resist impact. The finite element modeling of the compressor was carried out by using commercial software Hyper Mesh, and the original model was simplified. The finite element model to the import of Abaqus software, and the rationality of the simplified model is proved by the modal using the positive and negative triangle wave from vertical, horizontal and vertical input as impact load, and based on display solver for compressor time domain calculation and analysis of shock resistance, get the compressor components in the shock environment of weak links. The results show that the vertical impact response of the compressor is much larger than that of the other two directions. Support is the weak link of impact resistance of compressor structure. There is no collision between moving blade and casing under vertical impact. The results can provide ideas for compressor impact resistance test.
2023,45(21): 148-152 收稿日期:2022-7-18
DOI:10.3404/j.issn.1672-7649.2023.21.027
分类号:U664.131
基金项目:国家科技重大专项(2017-V-0002-0051-001)
作者简介:狄宏洋(1997-),男,硕士研究生,研究方向为设备抗冲击
参考文献:
[1] 汪玉, 张磊, 史少华, 等. 舰船水下非接触爆炸抗冲击技术综述[J]. 科技导报, 2009, 27(14): 19-22
[2] 杨莉, 杜俭业, 杜志鹏, 等. 水下爆炸冲击作用下浮动冲击平台试验安全性[J]. 噪声与振动控制, 2012, 32(6): 23-25YANG L, DU J Y, DU Z P, et al. Security analysis for floating shock platform test subjected to underwater explosion[J]. Noise and Vibration Control, 2012, 32(6): 23-25
[3] 陈海龙, 姚熊亮, 张阿漫, 等. 船用典型动力设备抗冲击性能评估研究[J]. 振动与冲击, 2009, 28(2): 45-50+199-200CHEN H L, YAO X L, ZHANG A M, et al. Study on impact resistance evaluation of marine typical power equipment[J]. Journal of Vibration and Shock, 2009, 28(2): 45-50+199-200
[4] 冯维, 李为, 吴广明. 基于Ansys的舰船基座抗冲击计算方法研究[J]. 上海造船, 2009(2): 7-9+13
[5] 王平团, 葛晨光. 舰用燃气轮机抗冲击性仿真评估方法[J]. 舰船科学技术, 2011, 33(S1): 43-48WANG P T, GE C G. Simulation evaluation of warship gas turbine, s shock resistance ability[J]. Ship Science and Technology, 2011, 33(S1): 43-48
[6] 尹家录, 王相平, 赵祥敏, 等. 舰船燃气轮机支撑系统结构设计及抗冲击计算分析[J]. 航空发动机, 2011, 37(3): 12-14+33YIN J L, WANG X P, ZHAO X M, et al. Structure design and anti-shock analysis of the bracing system for marine gas turbine[J]. Aeroengine| Aeroengine, 2011, 37(3): 12-14+33
[7] 万强, 吴新跃, 谢最伟. 某燃气轮机高压转子—涡轮抗冲击性能研究[J]. 机械设计与制造, 2012(2): 184-186WAN Q, WU X Y, XIE Z W. Research on the anti-shock dynamical characteristics of the high pressure rotor-turbo of a gas turbine[J]. Machinery Design & Manufacture, 2012(2): 184-186
[8] 韩少燕. 舰用燃机抗冲击分析方法与模型简化研究[D]. 大连: 大连理工大学, 2015.
[9] 韩璐, 张明远, 冯麟涵, 等. 基于冲击响应等效的燃机支撑结构冲击试验研究[J]. 振动与冲击, 2020, 39(18): 242-247
[10] 张磊, 杜志鹏, 吴静波, 等. 200t级浮动冲击平台水下爆炸试验低频冲击响应数据分析[J]. 中国舰船研究, 2018, 13(3): 60-65ZHANG L, DU Z P, WU J B, et al. Low-frequency shock response data analysis of underwater explosion test of 200-ton class floating shock platform[J]. Chinese Journal of Ship Research, 2018, 13(3): 60-65