换热器是一种把热量从一种介质传递到另一种介质的装置。由于换热表面污垢的存在,换热器的性能随着时间的推移而恶化。为了保持换热器的高效率,有必要定期对换热器的性能进行评估,在线监测的工艺参数能够帮助对换热器换热性能进行预测。本文利用温度和流量等参数计算表征换热器性能相关的指标,并基于共享权重长短时记忆网络(SWLSTM)建立预测模型,利用历史运行数据对其进行训练。通过与验证数据比较,验证了所建立模型预测的高精度和快速性;同时与传统神经网络模型进行比较,可见本模型在预测精度的优越性。通过换热性能参数的预测,能够合理规划停机清洗时间,降低成本。
The performance of heat exchangers deteriorates over time due to fouling on the surface of heat exchangers. In order to maintain the high efficiency of heat exchanger, it is necessary to evaluate the performance of heat exchanger regularly. The process parameters monitored online can help predict the heat transfer performance of heat exchanger. In this paper, parameters such as temperature and flow rate are used to calculate the indicators related to the performance of heat exchanger, and a prediction model is established based on the shared weight short and long time memory network (SWLSTM), which is trained with historical operation data. By comparing with the validation data, the accuracy and rapidity of prediction of the established model are verified. Moreover, compared with the traditional neural network model, it can be seen that the superiority of this model in prediction accuracy. Through the prediction of heat exchange performance parameters, maintenance personnel can reasonably plan the downtime cleaning time and reduce the cost of production loss.
2023,45(21): 153-157 收稿日期:2022-7-5
DOI:10.3404/j.issn.1672-7649.2023.21.028
分类号:U664.5+3
基金项目:中国核动力研究设计院核反应堆系统设计技术重点实验室基金资助项目(LRSDT2017302)
作者简介:余文敏(1988-),女,博士研究生,研究方向为核设施健康管理技术
参考文献:
[1] ZOHURI, B. Heat Exchanger Types and Classifications[J]. Compact Heat Exchangers, 2017(2): 19−56.
[2] GTL Jr, ZIZZA M , DERIENZO P . Heat exchangers in nuclear power plants - ScienceDirect[J]. Advances in Nuclear Science and Technology, 1964: 41-106.
[3] LIU Y , WANG X , MENG X , et al. A review on tube external heat transfer for passive residual heat removal heat exchanger in nuclear power plant[J]. Applied Thermal Engineering, 2018, 149.
[4] UGWU H U , EBUNUOHA C , ORJI C U , et al. Maintenance optimization of a marine heat exchanger subject to fouling[J]. Journal of Emerging Trends in Engineering and Applied Sciences, 2010.
[5] N. Epstein. General thermal fouling models[M]: fouling Science and Technology, 1988: 15-30.
[6] LALOT S, PALSSOR O, JONSSON G, et al. Comparison of neural networks and kalman filters performances for fouling detection in a heat exchanger[J]. International Journal of Exchanger, 2007, 8(1):151-168.
[7] SS A , MCR A , HZ A , et al. Fouling modeling and prediction approach for heat exchangers using deep learning[J]. International Journal of Heat and Mass Transfer, 159.
[8] 张仲彬, 李煜, 杜祥云, 等. 水质对板式换热器结垢的影响权重及其机制分析[J]. 中国电机工程学报, 2012(32): 7
[9] MOHANRAJ M, JAYARAJ S, MURALEEDHARAN C. Applications of artificial neural networks for thermal analysis of heat exchangers - A review[J]. International Journal of Thermal Sciences, 2015(90): 150-172
[10] IBRAHIM A H , NAFEY A S , HUSSAMI N . Prediction of the rate of heat transfer and fouling factor by using artificial neural network approach[J], 2007.
[11] AHILAN C, KUMANAN S, SIVAKUMARAN N. Online performance assessment of heat exchanger using artificial neural networks[J]. International Journal of Energy & Environment, 2011, 2(5): 829-844
[12] MAI T H, CHITOU N, PADET J. Method for the heat exchanger effectiveness calculation under variable dynamic conditions[J]. International Communications in Heat and Mass Transfer, 1999, 26(5): 739-748
[13] 黄承明. 板式换热器循环水侧污垢系数计算及换热面积余量的选取[J]. 化工与医药工程, 2017, 38(3): 4
[14] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(A02): 7
[15] JOZEFOWICZ R , ZAREMBA W , SUTSKEVER I . An Empirical exploration of recurrent network architectures[C]// International Conference on Machine Learning. JMLR. org, 2015.
[16] FRAPPIER V , NAJMANOVICH R J . Root Mean Square Error (RMSE) on the prediction of the effect of stabilizing mutations[J], 2014.
[17] GUO Y , WANG F , JIA M , et al. Hybrid modeling method for predicting the cooling water outlet temperature in plate heat exchanger[C]// 2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016.
[18] CAO W, YOU X Y. The prediction of heat efficiency and pollutant emission of non-rated loaded condensing heat exchangers[J]. Clean Technologies and Environmental Policy, 2018, 20(10): 2299-2310
[19] ŞAHIN F, OKBAZ A , ONBAŞ1OGLU H, et al. Prediction of the heat transfer rate of a fin and tube heat exchanger-using artificial neyral network trained and tested with experimental date[C]// 14th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2019.