加速度计测量误差决定了惯导系统中位置、姿态、速度等导航信息精度。针对环境温度变化对加速度计测量精度的影响展开讨论,分析了工作温度与测量误差间的关系;提出一种基于相关向量机(Relevance vector machine, RVM)的加速度计温度误差建模及补偿方法,能够实现温补模型参数的准确与快速解算。结果表明,补偿后的加速度计在10℃~50℃的温度范围内测量误差减小了50%以上,提高了其对环境温度变化的适应能力。
The accuracy of the position, attitude, and speed in navigation system is largely determined by the accuracy of accelerometer. Discussion was made in this paper, which is about the relationship between the errors and the temperature. Furthermore, a relevance vector machine based modeling and compensation method was proposed, which could compensate the temperature errors accuracy and rapidly. The result of verification experiment shows that,the measurement error of the accelerometer reduced by 50% at a temperature period of 10℃~50℃, which could improve the adaptability to the temperature variations.
2023,45(21): 171-176 收稿日期:2022-11-3
DOI:10.3404/j.issn.1672-7649.2023.21.032
分类号:U666.12
作者简介:宁云晖(1973-),女,硕士,副研究员,研究方向为潜艇作战系统及人机交互技术
参考文献:
[1] 王巍. 惯性技术研究现状及发展趋势[J]. 自动化学报, 2013, 39(6): 723-729WANG Wei. Status and development trend of inertial technology[J]. Acta automatica sinica, 2013, 39(6): 723-729
[2] 严恭敏. 捷联惯导算法及车载组合导航系统研究[D]. 西安:西北工业大学, 2004.
[3] 崔立尉. 惯性捷联导航系统的标定和数据对准技术[J]. 舰船科学技术, 2022, 44(12): 165-168CUI Liwei. Research on calibration and data alignment technology of inertial strap-down navigation system[J]. Ship science and technology, 2022, 44(12): 165-168
[4] 郭祎, 李威, 田兴, 等. 温度测试中石英加速度计热传递方式研究[J]. 新技术新工艺, 2022(7): 55-60GUO Yi, LI Wei, TIAN Xing, et al. Research on heat transfer mode of quartz accelerometer in temperature measurement[J]. New Technology & New Process, 2022(7): 55-60
[5] 金鑫. 集成式石英谐振加速度计及温度补偿研究[D]. 北京:北京信息科技大学, 2022.
[6] 陈雪. 一种基于惯性器件的温度补偿模型研究[D]. 成都:电子科技大学, 2022.
[7] 王淑娟, 黄显林, 刘升才. 加速度计温度模型的辨识[J]. 中国惯性技术学报, 1997(1): 32-37WANG Shujuan, HUANG Xianlin, LIU Shengcai. Identification for temperature model of accelerometer[J]. Journal of chinese inertial technolgy, 1997(1): 32-37
[8] 翁海娜, 胡小毛, 裴志, 等. 一种新的加速度计温度误差补偿方法[J]. 中国惯性技术学报, 2009, 17(4): 479-482WENG Haina, HU Xiaomao, PEI Zhi, et al. Novel method of temperature error compensation for accelerometer[J]. Journal of chinese inertial technolgy, 2009, 17(4): 479-482
[9] 俞茂超, 王新宇, 阳洪, 等. 石英挠性加速度计温度补偿方法研究[J]. 压电与声光, 2018, 40(2): 220-222YU Maochao, WANG Xinyu, YANG Hong, et al. Study on temperature compensation method of quartz flexible accelerometer[J]. Piezoelectrics and acoustooptics, 2018, 40(2): 220-222
[10] 张金云, 姜欢, 赵军虎, 等. 惯性平台系统石英加速度计温度建模补偿技术[J]. 导航与控制, 2021, 20(3): 66-73ZHANG Jinyun, JIANG Huan, ZHAO Junhu, et al. Research on temperature modeling and compensation technique of quartz accelerometer in inertial platform system[J]. Navigation and control, 2021, 20(3): 66-73
[11] 于湘涛, 张兰, 郭琳瑞, 等. 基于小波最小二乘支持向量机的加速度计温度建模和补偿[J]. 中国惯性技术学报, 2011, 19(1): 95-98
[12] 惠进, 郭栓运, 尹剑. 石英振梁加速度计的小波神经网络温度补偿研究[J]. 兵器装备工程学报, 2016, 37(7): 118-122HUI Jin, GUO Shuanyun, YIN Jian. Temperature compensation of quartz vibrating beam accelerometer based on wavelet neural network[J]. Journal of Ordnance Equipment Engineering, 2016, 37(7): 118-122
[13] 于东康, 杨功流, 吴宜荣, 等. 基于粒子群算法的石英挠性加速度计温度补偿方法研究[J]. 导航定位与授时, 2018, 5(5): 90-95
[14] 杨树仁, 沈洪远. 基于相关向量机的机器学习算法研究与应用[J]. 计算技术与自动化, 2010, 29(1): 43-47YANG Shuren, SHEN Hongyuan. Research and application of machine learning algorithm based on relevance vector machine[J]. Computing technology and automation[J], 2010, 29(1): 43-47