为保证船用通信网络的安全,设计基于深度数据挖掘的船用通信网络异常行为分类和识别方法。该方法数据处理模块采用全局信息数据融合策略,融合网络的原始采集数据,特征选择模块通过平均不纯度减少特征重要度计算方法,选择有效特征并计算该特征重要度后,形成特征集,将其输入分类识别模块的内外卷积网络深度学习网络模型中,通过模型的学习和训练,获取船用通信网络异常行为分类识别结果。测试结果显示:该方法可有效删除其中的无效特征,保留有效特征结果;可获取不同类别有效特征标签的重要度评分结果;分类识别的平均绝对误差均低于0.18,可完成不同流量变化下异常行为分类识别。
In order to ensure the secure communication of marine communication networks and real-time safety of ships, a classification and recognition method for abnormal behavior in marine communication networks based on deep data mining is studied. The data processing module of this method adopts a global information data fusion strategy to fuse the original collected data of the network. The feature selection module reduces the importance of the feature reading calculation method by average impure. After selecting effective features and calculating their importance, a feature set is formed, which is input into the deep learning network model of the internal and external convolutional network of the classification and recognition module. Through model learning and training, Obtain the classification and recognition results of abnormal behavior in marine communication networks. The test results show that this method can effectively delete invalid features and retain valid feature results. The importance rating results of effective feature labels in different categories can be obtained. The average absolute error of classification recognition is less than 0.18. It can complete the classification and recognition of abnormal behavior under different traffic changes.
2023,45(21): 181-184 收稿日期:2023-4-12
DOI:10.3404/j.issn.1672-7649.2023.21.034
分类号:TP183
作者简介:李瑛(1982-)),女,硕士,副教授,研究方向为人工智能、智能软件测试与质量保证及大数据技术等
参考文献:
[1] 肖衡, 龙草芳. 基于机器学习的无线传感网络通信异常入侵检测技术[J]. 传感技术学报, 2022, 35(5): 692-697.XIAO Heng, LONG Caofang. Communication Anomaly Intrusion Detection Technology for Wireless Sensor Networks Based on Machine Learning[J]. Chinese Journal of Sensors and Actuators, 2022, 35(5): 692-697.
[2] 康颖, 赵治华, 吴灏, 等. 基于Deep SVDD的通信信号异常检测方法[J]. 系统工程与电子技术, 2022, 44(7): 2319-2328.KANG Ying, ZHAO Zhihua, WU Hao, et al. Deep SVDD-based anomaly detection method for communication signals[J]. Systems Engineering and Electronics, 2022, 44(7): 2319-2328.
[3] 麻文刚, 张亚东, 郭进. 基于LSTM与改进残差网络优化的异常流量检测方法[J]. 通信学报, 2021, 42(5): 23-40.MA Wengang, ZHANG Yadong, GUO Jin. Abnormal traffic detection method based on LSTM and improved residual neural network optimization[J]. Journal on Communications, 2021, 42(5): 23-40.
[4] 钱爱娟, 樊昕, 董笑菊, 等. 基于社区发现的网络异常检测方法[J]. 计算机学报, 2022, 45(4): 825-837.QIAN AiJuan, FAN Xin, DONG XiaoJu, et al. Network Anomaly Detection Method Based on Community Detection[J]. Chinese Journal of Computers, 2022, 45(4): 825-837.
[5] 段雪源, 付钰, 王坤, 等. 基于多尺度特征的网络流量异常检测方法[J]. 通信学报, 2022, 43(10): 65-76.DUAN Xueyuan, FU Yu, WANG Kun, et al. Network traffic anomaly detection method based on multi-scale characteristic[J]. Journal on Communications, 2022, 43(10): 65-76.