针对舰船红外图像获取性难和敏感性问题,提出一种舰船红外目标图像视觉传达增强方法,提升舰船红外目标图象质量。采用改进的中值滤波预处理舰船红外图像,有效去除舰船红外图像中海浪的冲击噪声;通过Renyi熵方法将处理后的舰船红外图像二值化分割为前景域和背景域,以区分舰船目标和背景;通过改进的平台直方图均衡方法剔除舰船目标和背景红外图像冗余的像素点,均衡分配灰度值,实现舰船目标和背景增强;经改进的Canny对增强后舰船目标和背景图像边缘加权融合,得到最终的舰船增强图像。实验结果表明,所提方法可以有效去除舰船图像噪声,提升舰船红外图像的对比度,对图像和图像边缘的信息保有量充分,大幅提高了红外图像的质量和清晰度,加大了舰船红外目标图像视觉传达增强的可行性。
A visual communication enhancement method for ship infrared target images is proposed to address the issues of difficulty and sensitivity in obtaining ship infrared images, in order to improve the quality of ship infrared target images. Adopting improved median filtering to preprocess ship infrared images, effectively removing the impact noise of waves in ship infrared images; By using the Renyi entropy method, the processed ship infrared image is binarized and segmented into foreground and background domains to distinguish ship targets and backgrounds. By using an improved platform histogram equalization method to eliminate redundant pixel points in ship targets and background infrared images, the grayscale values are evenly distributed to achieve ship target and background enhancement. The improved Canny weights and fuses the edges of the enhanced ship targets and background images to obtain the final ship enhanced image. The experimental results show that the proposed method can effectively remove noise from ship images, improve the contrast of ship infrared images, retain sufficient information on images and image edges, significantly improve the quality and clarity of infrared images, and increase the feasibility of enhancing visual transmission of ship infrared target images.
2023,45(21): 201-204 收稿日期:2023-2-24
DOI:10.3404/j.issn.1672-7649.2023.21.039
分类号:TP391
作者简介:张雯靖(1982-),女,硕士,副教授,主要从事设计艺术学教学与研究
参考文献:
[1] 陈初侠, 丁勇. 基于多尺度语义网络的红外舰船目标检测[J]. 红外技术, 2022, 44(5): 529-536.CHEN Chuxia, DING Yong. Infrared Ship Detection Based on Multi-scale Semantic Network[J]. Infrared Technology, 2022, 44(5): 529-536.
[2] 苗传开, 娄树理, 公维锋, 等. 基于改进CenterNet的红外舰船目标检测算法[J]. 激光与红外, 2022, 52(11): 1717-1722.Miao Chuan-kai, LOU Shu-li, GONG Wei-feng, et al. Infrared ship target detection algorithm based on improved CenterNet[J]. Laser & Infrared, 2022, 52(11): 1717-1722.
[3] 黄攀, 杨小冈, 卢瑞涛, 等. 基于空间联合的红外舰船目标数据增强方法[J]. 红外与激光工程, 2021, 50(12): 545-554.HUANG Pan, YANG Xiaogang, LU Ruitao, et al. Data augmentation method of infrared ship target based on spatial association[J]. Infrared and Laser Engineering, 2021, 50(12): 545-554.
[4] 高子航, 刘兆英, 张婷, 等. 基于对抗域适应的红外舰船目标分割[J]. 数据采集与处理, 2023, 38(3): 598-607.GAO Zihang, LIU Zhaoying, ZHANG Ting, et al. Infrared Ship Target Segmentation Based on Adversarial Domain Adaptation[J]. Journal of Data Acquisition & Processing, 2023, 38(3): 598-607.
[5] 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.LIU Wanjun, GAO Jiankang, QU Haicheng, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[6] 徐英, 谷雨, 彭冬亮, 等. 面向合成孔径雷达图像任意方向舰船检测的改进YOLOv3模型[J]. 兵工学报, 2021, 42(8): 1698-1707.XU Ying, GU Yu, PENG Dongliang, et al. An Improved YOLOv3 Model for Arbitrary-oriented Ship Detection in SAR Image[J]. Acta Armamentarii, 2021, 42(8): 1698-1707.