本文旨在利用代理模型技术实现高强聚乙烯-负泊松比效应复合结构抗侵彻性能的快速预报,首先对高强聚乙烯层合板抗弹片侵彻数值仿真方法进行验证,建立可靠的高强聚乙烯-负泊松比效应复合结构抗侵彻数值仿真模型,并构建了其弹道极限快速预报的代理模型;分析了不同的代理模型方法和采样方式对代理模型精度的影响规律。结果表明,相较多项式响应面和径向基函数代理模型,Kriging代理模型的预报精度最高,最大相对误差为18.1%,归一化均方根误差为8.8%,相关系数为0.85;正交设计试验方法较拉丁超立方采样方式更适合复合结构弹道极限速度预报,本文为侵彻载荷下结构动态响应快速预报研究提供了参考。
The purpose of this paper is to explore the application of surrogate model on the penetration resistance of ultra-high molecular weight polyethylene - negative poisson's ratio structure composite sandwich panels, and achieve accurate and reliable rapid prediction of dynamic response of composite structure. Firstly, the numerical simulation method of penetration resistance of ultra-high molecular weight polyethylene laminated plate was verified, and a reliable numerical model of penetration resistance of ultra-high molecular weight polyethylene - negative poisson's ratio structure composite sandwich panels and a surrogate model for rapid prediction of ballistic limit velocity of composite structure were established. Then, the applicability of different surrogate models and sampling plans to the object of this paper is discussed. The results show that compared with the polynomial response surface model and the radial basis function model, the Kriging model has the highest prediction accuracy. The maximum relative error is 18.1%, the normalized root mean square error is 8.8%, and the correlation coefficient is 0.85. The orthogonal design method is more suitable for ballistic limit velocity prediction of composite structures than latin hypercube sampling method. The work in this paper provides a reference for the rapid prediction of structure dynamic response under penetration load.
2023,45(22): 13-17 收稿日期:2022-11-7
DOI:10.3404/j.issn.1672-7649.2023.22.003
分类号:U663.9
作者简介:董鹏(1979-),男,硕士,高级工程师,研究方向为舰船工程
参考文献:
[1] CHEN Xiaogang, ZHOU Yi, WELLS Garry, Numerical and experimental investigations into ballistic performance of hybrid fabric panels [J]. Composites Part B: Engineering, 2014, 58(3): 35–42
[2] 王晓强, 朱锡, 梅志远, 等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究[J]. 爆炸与冲击, 2009, 29(1): 29–34
WANG X Q, ZHU X, MEI Z Y, et al. Experimental study on the penetration resistance of thick UHMWPE laminates[J]. Explosion and Shock Waves, 2009, 29(1): 29–34
[3] 高恒, 杨宏伟, 杜建华. UHMWPE 纤维织物复合靶板抗弹性能研究[J]. 装甲兵工程学院学报, 2014, 28(5): 91–93
GAO H, YANG H W, Du J H. Study on the penetration resistance of the UHMWPE fabric composite plate[J]. Journal of Academy of Armored Force Engineering, 2014, 28(5): 91–93
[4] 陈长海, 徐文献, 朱锡, 等. 超高分子量聚乙烯纤维增强层合厚板抗高速钝头弹侵彻的理论模型[J]. 中国舰船研究, 2015, 10(3): 63–69,83
CHEN C, XU W, ZHU X, et al. Theoretical model for thick ultra-high molecular weight polyethylene fiber reinforced laminates penetrated by high-velocity blunt-nosed projectiles[J]. Chinese Journal of Ship Research, 2015, 10(3): 63–69,83
[5] CAI Sipei, ZHANG Pan, DAI Wenxi, et al. Multi-objective optimization for designing metallic corrugated core sandwich panels under air blast loading[J]. Journal of Sandwich Structures & Materials, 2019, 23(4).
[6] LAN Xu-ke, HUANG Qi, ZHOU Tong, et al. Optimal design of a novel cylindrical sandwich panel with double arrow auxetic core under air blast loading[J]. Defence Technology, 2020, 16(3).
[7] HU P, YANG H, ZHANG P, et al. Experimental and numerical investigations into the ballistic performance of ultra-high molecular weight polyethylene fiber-reinforced laminates[J]. Composite Structures, 2022, 290: 115499
[8] 张攀. 空中近场爆炸载荷下夹层板结构的动力学行为及其失效机理研究[D]. 武汉: 华中科技大学, 2014.
[9] NGUYEN L, LASSIG T, RYAN S, et al. Numerical modelling of ultra-high molecular weight polyethylene composite under Impact Loading[J]. Procedia Engineering, 2015, 103: 436–443