在船体板架的焊接工序中,由于制造误差产生的纵骨错位问题对焊接过程及焊接质量产生不利影响。以典型船体板架为例,在纵骨强制对齐的基础上采用顺序耦合的热弹塑性有限元法对其焊接过程进行数值仿真分析,研究纵骨错位量对焊接变形和应力的影响规律。结果表明,随着错位量的增加,错位纵骨两侧板格焊接变形分布的不对称性逐渐增强,左右两侧板格变形差值最大可增加3.7倍,且当错位量一定时,外板厚度越小纵骨错位的影响越大。此外,纵骨强制装配产生的应力与板架焊后残余应力均随错位量的增大而增加,当错位量为10 mm时,残余拉应力与压应力分别是纵骨未错位情况下的4.4倍与4.9倍。
In the welding process of hull grillage, dislocation of the longitudinal stiffener caused by the manufacturing errors has a negative iMPact on welding process and welding quality. To deal with the problem, the present paper proposes an analytical approach for welding hull grillage with dislocated longitudinal stiffener based on thermal elastic-plastic finite element method. A typical hull grillage is taken as an example to investigate the dislocation influence on the welding distortion and residual stress considering the effect of forced alignment. It is found that the asymmetry of panel distortion on both sides of the dislocated stiffener becomes obvious gradually as the dislocation degree increases. In other words, panel distortion close to the side of the dislocated stiffener is aggravated, while that away from the other side is reduced, the deformation difference between the two sides can be increased by 3.7 times at most. When the dislocation is constant, the influence of longitudinal dislocation increases with the decrease of plate thickness. In addition, stress is increased when the dislocation degree is developed, and when the dislocation is 10mm, the residual tensile stress and compressive stress are 4.4 and 4.9 times higher than that of the longitudinal without dislocation.
2023,45(22): 18-24 收稿日期:2022-10-27
DOI:10.3404/j.issn.1672-7649.2023.22.004
分类号:U671.8
作者简介:黄家乐(1997-),男,硕士研究生,研究方向为船体结构的焊接变形与残余应力数值模拟
参考文献:
[1] 孙鹏, 金雁, 张建交, 等. 船体大焊缝间隙对接焊横向收缩变形数值模拟[J]. 武汉理工大学学报, 2017, 41(02): 355–358
[2] 向祖权, 刘彬, 郭纯轩, 等. 板材焊缝间隙差异对温度场及应力场的影响[J]. 船舶工程, 2015, 37(10): 89–93
[3] DEND D, MURAKAWA H, LIANG W. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(45-48): 4613–4627
[4] 黄浩. 船体工艺手册[M]. 北京: 国防工业出版社, 2013: 793-794
[5] 董志波, 魏艳红, 刘仁培, 等. 不锈钢焊接温度场的三维数值模拟[J]. 焊接学报, 2004, 25(02): 9–14
[6] 周宏, 李敢, 朱红娟. 船舶板材边界条件对高频感应弯板成形的影响[J]. 焊接学报, 2010, 31(11): 101–104
[7] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299–305
[8] YONGZHI L, KAIYUN W, YUJING J, et al. Prediction of welding deformation in stiffened structure by introducing thermo-mechanical interface element[J]. Journal of Materials Processing Tech, 2015, 216: 440–446
[9] UEDA Y, YAMAKAWA T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method[J]. Transactions of the Japan Welding Society, 1971, 2(2): 186–196
[10] CHEN B, GUEDES SOARES C. Experimental and numerical investigation on welding simulation of long stiffened steel plate specimen[J]. Marine Structures, 2021, 75: 102824
[11] WANG J, SHIBAHARA M, ZHANG X, et al. Investigation on twisting distortion of thin plate stiffened structure under welding[J]. Journal of Materials Processing Technology, 2012, 212(8): 1705–1715
[12] 邓德安, 清岛祥一. 焊接顺序对厚板焊接残余应力分布的影响[J]. 焊接学报, 2011, 32(12): 55–58+115-116
[13] 张凯. 基于数值模拟的角焊缝焊接变形特点和控制研究[D]. 武汉: 武汉理工大学, 2017: 39-40