针对具有网格划分压电传感器-作动器的圆柱壳减振控制问题,提出了一种具有在线自组织能力的分布式H∞一致性减振方法。采用FFT方法,对振动数据进行振动能量时频分析,进行模态截断、确定控制阶次。随后,基于分布式H∞一致性控制理论与粒子群优化,进行迭代计算,优化选取部分压电致动器进行减振控制。使得压电致动器对外界激励变化具有在线自组织自适应能力,且H∞一致性性能指标最小化外激励对系统振动的影响。仿真结果表明,圆柱壳受到脉冲激励、持续激励以及多模态激励时,振动能量分别降低91.5%、90.9%、91.2%。控制器对外激励具有较好适应能力。
For the vibration control of cylindrical shells using grid-divided piezoelectric sensor actuators, a distributed H∞ consistent vibration reduction approach with online self-organization capability is presented. The FFT approach truncates the modes, calculates the control order, and examines the vibration energy in time and frequency. Iterative calculations are then carried out to pick some of the piezoelectric actuators for vibration damping control most effectively. These calculations are based on the distributed H∞ consistency control theory with particle swarm optimization. In addition, the H∞ consistency performance index reduces the impact of external excitation on system vibration, allowing the piezoelectric actuator to be online self-organizing and self-adaptive to changes in external excitation. The simulation results show that the vibration energy is reduced by 91.5%, 90.9%, and 91.2% when the cylindrical shell is subjected to impulsive excitation, continuous excitation, and multimodal excitation, respectively. The controller has good adaptability to external excitation.
2023,45(22): 25-33 收稿日期:2022-10-12
DOI:10.3404/j.issn.1672-7649.2023.22.005
分类号:TB535;U663.8
作者简介:杨松(1995-),男,硕士研究生,研究方向为船舶振动与噪声控制
参考文献:
[1] 刘文玺, 周其斗. 基于振动分析技术的潜艇舱段结构优化设计[J]. 舰船科学技术, 2017, 39(7): 54–59
[2] GOHARI H D, ZARASTVAND M R, TALEBITOOTI R, et al. Radiated sound control from a smart cylinder subjected to piezoelectric uncertainties based on sliding mode technique using self-adjusting boundary layer[J]. Aerospace Science and Technology, 2020, 106: 106141
[3] 李东旭. 大型挠性结构分散化振动控制: 理论与方法[M]. 北京: 科学出版社, 2013.
[4] ZHOU W, ZHANG K, WU S, et al. Distributed cooperative control for vibration suppression of a flexible satellite[J]. Aerospace Science and Technology, 2022, 128: 107750
[5] ZHANG N, NIU W, LI T. Consistency control of multi-agent system based on unknown input observer[J]. IFAC-Papers OnLine, 2018, 51(31): 566–571
[6] 纪良浩, 王慧维, 李华青. 分布式多智能体网络一致性协调控制理论[M]. 北京: 科学出版社, 2015.
[7] SUN Jun, LI Shuang, HUANG Jing, et al. Robust coordinated control for large flexible spacecraft based on consensus theory[J]. Journal of the Franklin Institute, 2020, 357(9): 5359–5379
[8] 耿小明, 尹韶平, 周景军, 等. 圆柱壳体振动主动控制作动器位置优化方法[J]. 水下无人系统学报, 2020, 28(6):650-656.
[9] 周威亚, 邬树楠, 王恩美. 基于一致性理论的卫星太阳能帆板分布式振动控制[J]. 南京航空航天大学学报, 2021, 53(6):909-917.
[10] J. LEO DONALD. Engineering analysis of smart material systems[M]. New York: John Wiley & Sons, Inc, 2007.
[11] A. LEISSA. Vibration of Shells[M]. Washington: NASA, 1973.
[12] 刘学良, 胥布工. 具有多个通信时延的多智能体系统分布式H∞一致性控制[J]. 控制与决策, 2012, 27(4): 494–500
[13] LIN Peng, JIA Yingmin, LI Lin. Distributed robust H∞ consensus control in directed networks of agents with time delay[J]. Systems & Control Letters, 2008, 57(8): 643–653
[14] DMITRY V. BALANDIN, MARK M. KOGAN. LMI-based H∞-optimal control with transients[J]. International Journal of Control, 2010, 83(8): 1664–1673
[15] WANG Jingyao, DUAN Zhisheng, ZHAO Yu, et al. H∞ and H2 control of multi-agent systems with transient performance improvement[J]. International Journal of Control, 2013, 86(12): 2131–2145
[16] LIU Yang, JIA Yingmin. H∞ consensus control for multi-agent systems with linear coupling dynamics and communication delays[J]. International Journal of Systems Science, 2012, 43(1–3): 50–62
[17] PRAMOD, P. KHARGONEKAR, KRISHAN, et al. H∞ Control with transients[J]. Siam Journal on Control & Optimization, 1991, 29(6): 1373–1393