考虑到船舶数值模拟过程中的不同的计算策略对于船舶阻力精确度影响不同,对STAR CCM+软件仿真过程中影响较大的几种影响因素进行对比分析,探讨了30 000 t散货船在不同计算区域、网格密度以及湍流模型等条件下船舶阻力的变化情况。结果表明,相比减少网格基础尺寸,适当的增加计算区域,可以在保证计算精度的情况下,减少计算时长,推荐采用SST K-Omega湍流模型进行仿真计算。提出的计算策略仿真误差在5%以内,满足实际的工程设计需要,是一种较为可靠的船舶阻力数值模拟方法,可为今后散货船静水阻力数值计算提供参考。
Considering that different calculation strategies in the process of ship numerical simulation have different effects on the accuracy of ship resistance, this paper compares and analyzes several influential factors in the process of STAR-CCM+ software simulation, and discusses the changes in ship resistance of 30000 t bulk carrier in different calculation areas, grid density, turbulence models and other conditions. The analysis results show that, compared with reducing the grid size, increasing the calculation area appropriately can reduce the calculation time while ensuring the calculation accuracy. The SST K-Omega turbulence model is recommended for simulation calculation. The simulation error of the calculation method proposed in this paper is within 5%, which can meet the needs of practical engineering design. It is a reliable numerical simulation method of ship resistance and can provide a reference for the calm water resistance numerical calculation of bulk carriers.
2023,45(22): 34-39 收稿日期:2022-11-1
DOI:10.3404/j.issn.1672-7649.2023.22.006
分类号:U661.31+1
基金项目:中国博士后科学基金资助项目(2021M690496);国家重点研发计划资助项目(SQ2019YFE011597);国家自然科学基金资助项目(51876019);大连市杰出青年科技人才支持计划资助项目(2020RJ03);中央高校基本科研业务费资助项目(3132019331)
作者简介:翟锦果(1998-),女,硕士研究生,研究方向为船舶节能减排及建模仿真。
参考文献:
[1] 方海鹏, 陆梅兴, 黄超. 75000 t散货船阻力预报方法[J]. 船舶工程, 2017, 39(8): 10–12+29
[2] 曾帅. 典型海况下的船舶阻力预报研究[D]. 大连: 大连海事大学, 2020.
[3] 杨帆, 张青山, 杜云龙, 等. 船模阻力评估模块开发[J]. 船舶工程, 2019, 41(11): 19–23+97
[4] TEZDOGAN T, DEMIREL Y K, KELLETT P, et al. Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming[J]. Ocean Engineering, 2015, 97: 186–206
[5] 尹辉, 齐来保, 江梓丹, 等. 基于STAR CCM+对5415船模的阻力研究[J]. 中国水运(下半月), 2019, 19(5): 55–57
[6] 徐伟桐, 蒋一, 眭爱国. 基于STAR-CCM+平台的双体槽道滑行艇水动力性能研究[J]. 中国造船, 2022, 63(2): 137–144
[7] 刘飞. 基于CFD方法的破损船舶阻力预报研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[8] 罗良. 基于一维方法和三维方法的模型尺度及实船尺度船舶阻力预报[J]. 舰船科学技术, 2022, 44(6): 18–21
LUO L. Prediction of ship resistance based on one-dimensional and three-dimensional methods at model scale and real ship scale[J]. Ship Science and Technology, 2022, 44(6): 18–21
[9] 倪崇本, 朱仁传, 缪国平, 等. 一种基于CFD的船舶总阻力预报方法[J]. 水动力学研究与进展A辑, 2010, 25(5): 579–586
NI C B, ZHU C R, MIAO G P, et al. A prediction method of ship total resistance based on CFD[J]. Chinese Journal of Hydrodynamics, 2010, 25(5): 579–586
[10] VISONNEAO M, QUEUTEY P, DENG G B. Model and full-scale free-surface viscous flows around fully-appended ships[C]//ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006. Delft University of Technology. European Community on Computational Methods in Applied Sciences (ECCOMAS), 2006.
[11] LE T H, VU M T, BICH V N, et al. Numerical investigation on the effect of trim on ship resistance by RANSE method[J]. Applied Ocean Research, 2021, 111: 102642
[12] ANDREA FARKAS, NASTIA D, IVANA M. Assessment of hydrodynamic characteristics of a full-scale ship at different draughts[J]. Ocean Engineering, 2018, 156:135-152
[13] Tezdogan T, Incecik A, Turan O. Full-scale unsteady RANS simulations of vertical ship motions in shallow water[J]. Ocean Engineering, 2016, 123: 131–145
[14] KIM Y C, KIM K S, KIM J, et al. Analysis of added resistance and seakeeping responses in head sea conditions for low-speed full ships using URANS approach[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(6): 641–654
[15] SAYDAMA Z, GOKCAY S, INSEL M. CFD based vortex generator design and full-scale testing for wake non-uniformity reduction[J]. Ocean Engineering, 2018, 153: 282–296
[16] 杜云龙, 陈伟民, 董国祥. 典型油船船模静水阻力CFD计算策略探讨[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 661–665
[17] 陈永博. 船舶波浪增阻预报数值方法比较研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.