针对现有导弹发射试验筒管道机器人机械结构受限,不能很好适应狭小管道的问题,对适用于狭小管道的管道机器人结构及其控制系统展开研究。首先,建立管道机器人模型,分析其实现行走和变径的工作原理、主要结构和动力机构的力学特性;其次,分析管道机器人的行走性能,对管道机器人的牵引能力和过弯能力进行了计算,确定了机器人的可应用场景。最后,开发了行走装置控制器,在设计管道机器人控制系统的前提下,详细阐述了管道机器人系统的控制原理,对上位机界面做了简要的功能介绍,并通过实验对机器人结构和控制系统的合理性做了验证。研究结果表明,管道机器人能与狭小管道保持良好接触状态,独立完成行走动作,实验验证了管道机器人在垂直管道内的行走能力与基于视觉的管道内壁损伤情况识别能力。
Aiming at the problem that the mechanical structure of the existing pipeline robot is limited and cannot be well adapted to the narrow pipeline; it is necessary to conduct research on the structure and control system of the pipeline robot suitable for the narrow pipeline. First, establish a pipeline robot model, analyze its working principle of walking and reducing diameter, the main structure and mechanical characteristics of the dynamic mechanism; second, analyze the walking performance of the pipeline robot, and carry out the traction ability and bending ability of the pipeline robot Calculate and determine the applicable scenarios of the robot; Finally, the walking device controller is developed. Under the premise of designing the pipeline robot control system, the control principle of the pipeline robot system is elaborated in detail, and a brief functional introduction to the host computer interface is given. And through experiments to verify the rationality of the robot structure and control system. The research results show that the pipeline robot can maintain good contact with the narrow pipeline and complete the walking action independently. The experiment verifies the pipeline robot's walking ability in the vertical pipeline and the ability to recognize the damage situation of the pipeline inner wall based on vision.
2023,45(22): 67-71 收稿日期:2022-11-1
DOI:10.3404/j.issn.1672-7649.2023.22.012
分类号:U663.6
作者简介:刘东(1993-),男,硕士,工程师,研究方向为发射装置设计
参考文献:
[1] 金钊, 陈思达. 舰空导弹垂直发射系统发展概况[J]. 飞航导弹, 2006(1): 23–27
[2] KWON Y S, LEE B, WHANG I C, et al. A pipeline inspection robot with a linkage type mechanical clutch[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2010: 2850–2855.
[3] PARK J, KIM T, YANG H. Development of an actively adaptable in-pipe robot[C]//2009 IEEE International Conference on Mechatronics. IEEE, 2009: 1–5.
[4] PARK J, PARK S, LEE D, et al. Prediction method of an in-pipe robot's orientation to pass in a curved pipe[C]//2009 ICCAS-SICE. IEEE, 2009: 5707–5711.
[5] KAKOGAWA A, MA S. Design of an underactuated parallelogram crawler module for an in-pipe robot[C]//IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2013: 1324–1329.
[6] CAI HONG-SHENG, TAN LONG-QIANG. Application of ROVVER 400 video-endoscope to the inspection of power plant equipment[J]. Nondestructive Testing, 2006, 5(3): 512–7
[7] 王殿君, 李润平, 黄光明. 管道机器人的研究进展[J]. 机床与液压, 2008, 36(4): 185–187
[8] 邓宗全, 陈军, 姜生元. 六独立轮驱动管内检测牵引机器人[J]. 机械工程学报, 2005, 41(9): 67–72
[9] 谢文彬, 杨建国, 李蓓智. 管道检测机器人的研制[J]. 机械工程师, 2005(1): 14–16
[10] 郭瑞杰, 李杰, 王忠. 一种管道机器人爬行机构的工作原理[J]. 机械设计, 2012, 29(11): 26–30
[11] 马认琦, 陈建兵, 张玺亮. 液压驱动式井下机器人的研究与设计[J]. 钻采工艺, 2017(1): 77-80+9.
[12] 武燕, 王才东, 王新杰. 可变径管道机器人系统的设计与研究[J]. 矿山机械, 2013, 41(4): 124–127
[13] 闫宏伟, 汪洋, 马建强. 轮式管道机器人过弯动态特性分析[J]. 西安交通大学学报, 2018, 52(8): 92–99
[14] 张建伟, 齐咏生, 王林. 一种新型可变径管道机器人的结构设计与控制实现[J]. 测控技术, 2014, 33(10): 64-67.