针对未知近岸海域水上水下地形一体化测量需求,无人水面艇(Unmanned Surface Vehicle,USV)搭载导航雷达、深度计、POS MV、多波束测深仪及激光扫描仪等设备,通过设计在线地图构建及测量路径规划方法,使得USV在未知环境下自主完成地形一体化测量任务。通过离线电子海图获得待测区域初始基准地图,结合雷达、深度计等传感器实时感知的信息,采用一种基于贝叶斯估计方式的占据栅格建图方法,实现对基准地图的修正、更新,进而根据测量需求自适应调节测量路径间距。同时构建测量地图,使用基于神经元激励方法自主实现完全遍历的测量路径规划,兼顾使用A星算法避免路径规划锁死,以获得合理可行的测量路径实时规划结果。USV按照自主规划的测量路径自主航行,多波束测深仪、激光扫描仪实时测量、获取地形云数据后进行无缝拼接,完成未知近岸海域的水上水下地形一体化测量工作。
To meet the needs of integrated survey of underwater and underwater topography in unknown coastal waters, Unmanned Surface Vehicle (USV) are equipped with navigation radar, depth gauge, POS MV, multi-beam bathymeter and laser scanner, etc. By designing online map construction and survey path planning methods, USV can independently complete the integrated survey of topography in unknown environment. The initial reference map of the area to be measured is obtained by off-line electronic chart, and the reference map is revised and updated by combining the real-time sensing information of sensors such as radar and depth meter, and adopt an occupancy grid mapping method based on Bayesian estimation to realize the correction and update of the reference map. At the same time, the measurement map is constructed, and the measurement path planning based on neuron excitation method is realized independently, and the A-star algorithm is used to avoid the locking of path planning, so as to obtain reasonable and feasible real-time planning results of measurement path. The USV navigates autonomously according to the self-planned measurement path, and the multi-beam sounder and laser scanner measure in real time, obtain terrain cloud data, and then perform seamless splicing, thus completing the integrated measurement of underwater and underwater terrain in unknown coastal waters.
2023,45(22): 86-92 收稿日期:2022-11-1
DOI:10.3404/j.issn.1672-7649.2023.22.016
分类号:TP249
作者简介:宋吉广(1992-),男,助理研究员,研究方向为无人航行器运动控制方法
参考文献:
[1] 金久才, 张杰, 等. 自动表面船用于岛礁水深测绘[J]. 海洋技术, 2010, 29(2): 5–8
[2] 赵培, 王之顺, 叶瑞峰, 等. 无人测量船在水库水下地形测量中的应用[J]. 经纬天地, 2018(01): 68–71
[3] 赵春明, 叶作安, 谢志茹, 等. 水上水下一体化测量技术探讨[J]. 中国水运, 2016, 16(9): 288–290
ZHAO Chunming, YE Zuoan, XIE Zhiru, et al. Discussion on integrated measurement technology of water and underwater[J]. China Water Transport, 2016, 16(9): 288–290
[4] 范彦斌, 张晓飞, 孙祝友, 等. 连云港赣榆港区水下地形地貌研究[J]. 地质学刊, 2017, 41(4): 652–654
[5] 张倩, 梅赛, 石波, 等. 船载水上水下一体化测量技术及应用——以舟山册子岛为例[J]. 海洋地质前沿, 2019, 35(9): 70–75
[6] 操文芷. 基于电子海图和航海雷达的无人水面艇路径规划研究[D]. 大连: 大连海事大学, 2017.
[7] 刘强, 翟国君, 卢秀山. 船载传感器一体化测量技术与应用[J]. 测绘通报, 2019(10): 127–132
[8] 苗润龙, 庞硕, 姜大鹏, 等. 海洋自主航行器多海湾区域完全遍历路径规划[J]. 测绘学报, 2019, 48(2): 256–264
[9] 钟雨轩, 葛磊, 张鑫, 等. 无人水面艇岛礁海域完全遍历路径规划[J]. 上海大学学报, 2017, 23(1): 18–26
[10] 危双丰, 庞帆, 刘振彬, 等. 基于激光雷达的同时定位与地图构建方法综述[J]. 计算机应用研究, 2020, 37(2): 327–332
[11] 于鹏. 浅海水下地形雷达成像理论研究与应用[D]. 上海: 华东师范大学, 2017.
[12] 殷波. 移动机器人同时定位与地图创建方法研究[D]. 青岛: 中国海洋大学, 2006.
[13] SHIN Y S, LEE Y J, CHOI H T, et al. Bundle adjustment from sonar images and SLAM application for seafloor mapping [C] //OCEANS 2015 - MTS/IEEE Conf. Exhib, Washington, DC, USA: IEEE, 2015: 1–6.
[14] JIE L, MICHAEL K, RYAN M. E, et al. Pose-graph SLAM using forward-looking sonar [C] //Robotics and Automation Letters IEEE, vol. 3, no. 3, USA: IEEE, 2018: 2330–2337.
[15] 柴进柱. 水深测量作业中的测线布设与实施策略研究[J]. 海洋测绘, 2013, 33(3): 44–46
[16] 李靖涵. 海底地貌自动制图综合算法研究[D]. 郑州: 战略支援部队信息工程大学, 2018.
[17] 夏天. 基于激光2D-SLAM的地图构建算法研究[D]. 杭州: 杭州电子科技大学, 2020.
[18] 魏杨. 基于激光雷达的即时定位与制图技术[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[19] 王仲民, 井平安, 朱博. 基于神经元激励的移动机器人遍历路径规划[J]. 控制工程, 2017, 24(2): 284–286.
[20] 郭强. 基于改进的A星算法和B样条函数的仿生机器鱼路径规划研究[D]. 天津: 天津大学, 2011.