合理分析管系的水锤效应,对管系的安全性、经济性都有着十分重要的意义。目前对水锤效应的研究往往只考虑流体与管道之间的作用情况,忽略了管系中管道与支架的整体性。为更加准确的计算管系水锤效应发生界面的水锤压力大小,以某深水通用性FPSO管道支架参数为基础,设计了一种易于简化计算的管系模型,通过对比分析仅考虑管道内流体、考虑管道内流体与管道耦合以及管道内流体与管路支架整体系统双向流固耦合时,水锤效应的情况。结果表明,仅考虑管道内流体、考虑管道内流体与管道耦合时,对水锤压力大小影响不大。当管道内流体与管路支架整体系统双向流固耦合时,计算结果有较为明显的降低(在计算工况下降低约6.06%),其原因在于管道支架在水锤效应发生时,产生了一定的变形(在计算工况下最大位移为0.0472 m)。
Reasonable analysis of water hammer effect of pipeline system is of great significance to the safety and economy of pipeline system. At present, the study of water hammer effect often only considers the interaction between fluid and pipeline, ignoring the integrity of pipeline and support in the pipeline system. In order to more accurately calculate the water hammer pressure at the interface where the water hammer effect occurs in the pipeline system, a pipeline model that is easy to simplify the calculation is designed based on the parameters of a deep-water universal FPSO pipeline support. Through comparative analysis, the water hammer effect is considered when only the fluid in the pipeline is considered, the fluid and pipeline coupling in the pipeline are considered, and the two-way fluid solid coupling between the fluid in the pipeline and the overall system of the pipeline support is considered. The results show that only considering the fluid in the pipeline and considering the coupling between the fluid in the pipeline and the pipeline has little influence on the water hammer pressure. When the fluid in the pipeline and the overall system of the pipeline support are coupled in a two-way fluid solid way, the calculation results have a significant reduction (about 6.06% in the calculation condition), because the pipeline support has a certain deformation when the water hammer effect occurs (the maximum displacement is 0.0472 m in the calculation condition).
2023,45(22): 105-109 收稿日期:2022-11-3
DOI:10.3404/j.issn.1672-7649.2023.22.019
分类号:TH38
基金项目:江苏省研究生科研与实践创新计划项目(KYCX21_3503)
作者简介:李秀(1998-),男,硕士研究生,研究方向为船舶管路
参考文献:
[1] LI Y, HU X, ZHOU F, et al. A new comprehensive filtering model for pump shut-in water hammer pressure wave signals during hydraulic fracturing[J]. Joumal of Petroleum Scionce and Engineering, 2021: 109796.
[2] MIAO Y, QIU Z, ZHANG X, et al. Effects of a water hammer and cavitation on vibration transients in a reservoir-pipe-valve system[J]. Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej (PTMTS), 2021,59(4). 611-622.
[3] XI B, WANG C, XI W, et al. Experimental investigation on the water hammer characteristic of stalling fluid in eccentric casing-tubing annulus[J]. Energy, 2022, 253: 1-13.
[4] MICHA, KUBRAK, APOLONIUSZ, et al. Water hammer phenomenon in pipeline with inserted flexible tube[J]. Journal of Hydraulic Engineering, 2020, 146(2): 1-11.
[5] 张巧玲, 黄铋匀, 杨振东, 等. 基于特征线法的含气输水管道水锤特性分析[J]. 农业工程学报, 2022, 38(5): 79-86.
[6] 郭强, 周建旭, 黄亚, 等. 考虑流固耦合的厚壁输水管水锤和振动特性分析[J]. 农业工程学报, 2020, 36(21):137-144.
[7] 王祺武, 李志鹏, 朱慈东, 等. 重力流输水管路阀门调节与水锤控制分析[J]. 流体机械, 2020, 48(6): 38-43+50.
[8] GROUP L W. Pipeline pressure[J]. LPG World, 2011(21): 17
[9] 陈旭云, 张健, 俞晓东, 等. 考虑爆管工况的长距离供水工程水锤防护研究[J]. 人民黄河, 2021, 43(7): 145-148+159.
[10] 孙哲豪, 吴旭敏, 陈丽芬, 等. 高扬程小流量加压供水工程水锤防护设计研究[J]. 灌溉排水学报, 2020, 39(S2): 66-71+75.
[11] 陈亚飞, 顾卫国, 王德忠, 等. 球型调节阀关阀水锤效应的试验研究与数值计算[J]. 排灌机械工程学报, 2021, 39(10): 1027-1032.
[12] 王学芳. 工业管道中的水锤[M]. 北京: 科学出版社, 1995.
[13] 杨豪杰. 通用型FPSO关键管网系统水锤分析及优化防护研究[D]. 镇江: 江苏科技大学.