船舶燃气轮机对转速的要求较高,需在瞬间完成响应并保持稳定。然而,由于燃气轮机具有惯性和时间延迟等特性,导致转速的调整可能存在响应滞后或者波动问题。为此,提出基于状态观测的船舶燃气轮机转速自适应模糊控制方法。应用船舶燃气轮机转速状态观测器,结合船舶燃气轮机转速与燃油量之间的映射关系,根据当下燃油量状态,观测实际船舶燃气轮机转速,通过基于模糊自适应PID控制器的转速控制模型,计算实际转速与给定转速的转速偏差、偏差率,由模糊自适应PID控制器自适应调节船舶燃气轮机转速。实验结果证明:此方法应用下,船舶燃气轮机转速能够得以准确控制。
Marine gas turbines have high requirements for speed and need to respond in an instant and maintain stability. However, due to the inertia and time delay characteristics of gas turbines, the adjustment of speed may have the problem of response lag or fluctuation. Therefore, an adaptive fuzzy control method for Marine gas turbine speed based on state observation is proposed. Based on the mapping relationship between ship gas turbine speed and fuel amount, the actual ship gas turbine speed is observed according to the current fuel amount state by applying the ship gas turbine speed state observer, and the speed deviation and deviation rate between the actual speed and the given speed are calculated through the speed control model based on the fuzzy adaptive PID controller. The speed of Marine gas turbine is adjusted adaptively by fuzzy adaptive PID controller. Experimental results show that the speed of Marine gas turbine can be controlled accurately with this method.
2023,45(22): 126-129 收稿日期:2023-7-12
DOI:10.3404/j.issn.1672-7649.2023.22.023
分类号:TM611
基金项目:山西省教育厅高等学校教学改革创新项目一般课题(J2020387)
作者简介:马树焕(1972-),女,副教授,研究方向为机械结构及参数控制
参考文献:
[1] 戴日辉, 宋子刚, 董辉, 等. 船用燃气轮机输出轴对中状态监测装置[J]. 热能动力工程, 2021, 36(3): 13-18.
DAI Rihui, SONG Zigang, DONG Hui, et al. Monitoring device for the alignment condition of marine gas turbine output shaft[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(3): 13-18.
[2] 赵松涛, 王南, 王鑫, 等. 水下爆炸作用下船舶结构与燃气轮机动态响应的数值研究(英文)[J]. 船舶力学, 2021, 25(6): 815-827.
ZHAO Songtao, WANG Nan, WANG Xin, et al. Numerical investigation of dynamic responses of ship structure and gas turbine subjected to underwater explosion[J]. Journal of Ship Mechanics, 2021, 25(6): 815-827.
[3] 宋武健, 王国玲, 罗成汉, 等. 船舶氢储直流电力推进系统控制器转速环带宽设计方法[J]. 中国舰船研究, 2023, 18(1): 260-268.
SONG Wu-jian, WANG Guo-ling, LUO Cheng-han, et al. Speed-loop bandwidth design method for controller parameters of ship hydrogen storage DC electric propulsion system[J]. Chinese Journal of Ship Research, 2023, 18(1): 260-268.
[4] 宋恩哲, 孙晓军, 姚崇, 等. 船舶混合动力系统模式切换与动态协调控制[J]. 哈尔滨工程大学学报, 2022, 43(4): 522-528.
SONG Enzhe, SUN Xiaojun, YAO Chong, et al. Mode switching and dynamic coordination control of ships with a hybrid power system[J]. Journal of Harbin Engineering University, 2022, 43(4): 522-528.
[5] 徐涛, 李晖, 祁昱豪. 船舶参数横摇抑制的神经网络逆/内模控制[J]. 船舶工程, 2022, 44(6): 109-116.
XU Tao, LI Hui, QI Yuhao. Neural network inverse/internal model control for ship parametric roll suppression[J]. Ship Engineering, 2022, 44(6): 109-116.
[6] 张青山, 陈伟民, 杜云龙, 等. 基于实尺度船舶自航数值模拟的航速预报[J]. 中国造船, 2022, 63(5): 11-21.
ZHANG Qingshan, CHEN Weimin, DU Yunlong, et al. Speed prediction based on full scale numerical simulation of self-propulsion[J]. Shipbuilding of China, 2022, 63(5): 11-21.
[7] 谢嘉令, 施伟锋, 兰莹, 等. 基于幂次指数趋近律的船舶电力推进控制研究[J]. 计算机仿真, 2022, 39(6): 279-283.
XIE Jialing, SHI Weifeng, LAN Ying, et al. Research on sliding mode control of ship electric propulsion based on power exponent reaching law[J]. Computer Simulation, 2022, 39(6): 279-283.