针对低信噪比情况下目标回波参数估计性能下降问题,提出一种基于互补集总经验模态分解-互信息(CEEMD-MI)的目标回波参数估计算法。利用互补集总经验模态分解(CEEMD)对低信噪比情况下的目标回波进行自适应分解,通过互信息(MI)选取信号成分所在固有模态函数对信号进行重构,再对重构后的信号进行参数估计。仿真和实验数据的处理结果表明,所提方法中心频率估计误差小于0.2%,初相位估计误差小于2.5%。
Aiming at the degradation of estimating the parameters of target echo under low signal to noise ratio, a target echo parameter estimation algorithm based on complementary ensemble empirical mode decomposition-mutual information(CEEMD-MI) is proposed. Complementary ensemble empirical mode decomposition(CEEMD) is used to adaptively decompose the target echo under low signal to noise ratio, select the intrinsic mode function which contains signal component via MI to reconstruct the signal, then estimate the parameters of the reconstructed signal. The processing results of simulation and experiment data show that, using the proposed method, the estimation error of center frequency and initial phase can be less than 0.2% and 2.5%.
2023,45(22): 155-159 收稿日期:2022-11-22
DOI:10.3404/j.issn.1672-7649.2023.22.029
分类号:U666.7
作者简介:刘倩(1993-),女,助理工程师,研究方向为水声信号处理
参考文献:
[1] 李亚安, 王洪超, 陈静. 基于奇异谱分解的水声信号降噪方法研究[J]. 系统工程与电子技术, 2007(4): 524–527
LI Ya-an, WANG Hong-chao, CHEN Jing. Research on denoising of underwater acoustic signal based on singular spectrum decomposition[J]. System Engineering and Electronics, 2007(4): 524–527
[2] WEI K, BIN Y. De-noising of underwater acoustic signals based on ICA feature extraction[C]// 10th Iberoamerican Congress on Pattern Recognition, 2005: 917–924.
[3] 鲍雪山. 潜艇自噪声自适应有源抵消技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
[4] DONOHO D L. Denoising by soft-thresholding[J]. IEEE Trans on Information Theory, 1995, 41(3): 613–627
[5] DONOHO D L, JOHNSTONE I M, KERKYACHARIAN G, et al. Wavelet shrinkage: Asymptopia?[J]. Journal of the Royal Statistical Society, Series B, 1995, 57(2): 301–369
[6] DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81: 425–455
[7] DONOHO D L, JOHNSTONE I M. Ideal denoising in an orthogonal basis chosen from a library of bases[J]. C R Acad Sci I-Math, 1994, 319: 1317–1322
[8] 杨宏. 经验模态分解及其在水声信号处理中的应用[D]. 西安: 西北工业大学, 2015.
[9] WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41
[10] YEH Jia-rong, SHIEH Jiann-shing. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135–156