为了实现水下磁传感器位置和姿态的高精度校准,解决原有技术未考虑姿态校准和校准算法依赖初始值设置的问题,设计并制作一种基于动态电磁线圈和差分进化算法的水下磁传感器校准装置场地试验样机,并进行数值仿真实验和场地验证实验。数值仿真实验表明,对7 m外的磁传感器进行校准时,定位误差不超过0.03 m,姿态误差不超过0.43°。场地验证实验表明,在地磁噪声干扰环境下对7 m外的磁传感器进行校准时,定位误差0.07 m,姿态误差1.37°。分别采用差分进化算法和Levenberg-Marquardt算法对磁传感器的位置和姿态进行最优化求解,发现在地磁噪声较大时,Levenberg-Marquardt算法容易受到初始值影响出现不收敛的情况,差分进化算法算法校准精度较高,且可避免繁琐的初始值选择过程。研究表明,所制作的水下磁传感器校准装置场地试验样机能够实现高精度的位置和姿态校准,具有较高的应用潜力。
In order to achieve the high-precision calibration of the position and attitude of underwater magnetic sensor, and solve the problems that the original technology does not consider the attitude calibration and the calibration algorithm depends on the initial value setting, a calibration device was designed and manufactured for the underwater magnetic sensor based on the dynamic electromagnetic coil and the differential evolution algorithm. And the numerical simulation and field verification tests were carried out. The numerical simulation test shows that the positioning error is less than 0.03m and the attitude error is less than 0.43° when the magnetic sensor is calibrated from 7 m away. The field verification test shows that the positioning error is 0.07 m and the attitude error is 1.37° when the magnetic sensor is calibrated from 7 m away in the geomagnetic noise environment. The differential evolution algorithm and the Levenberg-Marquardt algorithm are respectively used to optimize the position and attitude of sensor. It is found that Levenberg-Marquardt algorithm is prone to non-convergence under the influence of the initial value when the geomagnetic noise is large, the differential evolution algorithm calibration accuracy is high, and the cumbersome initial value selection process can be avoided. The research shows that the underwater magnetic sensor calibration device can achieve high-precision position and attitude calibration, and has high application potential.
2023,45(22): 160-168 收稿日期:2022-11-10
DOI:10.3404/j.issn.1672-7649.2023.22.030
分类号:U665.18
基金项目:国家自然科学基金资助项目(51277176)
作者简介:郭成豹(1975-),男,博士,副教授,研究方向为电气工程
参考文献:
[1] HOLMES J J. Modeling a ship’s ferromagnetic signatures[M]. Maryland: Morgan & Claypool Publishers, 2007: 1-3.
[2] 候希晨, 孙玉东, 吴江海. 基于PSO算法的磁偶极子阵列舰船磁场模拟研究[J]. 舰船科学技术, 2022, 44(18): 159–164
HOU Xichen, SUN Yudong, WU Jianghai. Magnetic field modelling of ship using magnetic dipole array based on PSO algorithm[J]. Ship Science and Technology, 2022, 44(18): 159–164
[3] 郭成豹, 殷琦琦. 舰船磁场磁单极子阵列法建模技术[J]. 物理学报, 2019, 68(11): 114101
GUO Chengbao, YIN Qqiqi. Magnetic monopole array model for modeling ship magnetic signatures[J]. Acta Physica Sinica, 2019, 68(11): 114101
[4] 孙兴凯, 胡平, 吕俊军, 等. 基于时谐电偶极子模型的交变磁场定位技术[J]. 舰船科学技术, 2022, 44(7): 132–137
SUN Xingkai, HU Ping, LV Junjun, et al. Research on alternating magnetic field location based on time-harmonic electric dipole model[J]. Ship Science and Technology, 2022, 44(7): 132–137
[5] 郭成豹, 胡松, 王文井, 等. 利用磁传感器阵列磁场差值的舰船磁场反演建模方法[J]. 兵工学报, 2022, 43(1): 111–119
GUO Chengbao, HU Sao, WANG Wenjing, et al. Ship magnetic field inversion modeling method utilizing the magnetic field difference between magnetic sensors[J]. Acta Armamentarii, 2022, 43(1): 111–119
[6] 吕俊军, 陈凯, 苏建业, 等. 海洋中的电磁场及其应用[M]. 上海: 上海科学技术出版社, 2020: 296-300.
[7] 郭成豹, 刘大明, 肖昌汉, 等. 一种磁传感器定位方法[P]. 中国: 102928884, 2015-07-22.
[8] O’DONOGHUE K, EUSTACE D, GRIFFITHS J, et al. Catheter position tracking system using planar magnetics and closed loop current control[J]. IEEE Transactions on Magnetics, 2014, 50(7): 5100209
[9] O’DONOGHUE K, CANTILLON-MURPHY P. Low cost super-Nyquist asynchronous demodulation for use in EM tracking systems[J]. IEEE Transactions on Instrumentation and Measwement, 2015, 64(2): 458-466.
[10] PFEIFFER C, RUFFIEUX S, ANDERSEN L M, et al. On-scalp MEG sensor localization using magnetic dipole-like coils: a method for highly accurate co-registration[J]. Neuroimage, 2020, 212: 116686
[11] 倪光正, 杨仕友, 邱捷. 工程电磁场数值计算[M]. 北京: 机械工业出版社, 2010: 67-69.
[12] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安: 西北工业大学出版社, 2019: 244-245.
[13] PRICE K, STORN R, LAMPINEN J. Differential evolution[M]. Berlin: Springer, 2005: 157-159.
[14] STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359
[15] PARK T Y, KIM H J, PARK S H, et al. Differential evolution method to find optimal location of a single-element transducer for transcranial focused ultrasound therapy[J]. Computer Methods and Programs in Biomedicine, 2022, 219: 106677
[16] FORST W, HOFFMANN D. Optimization-Theory and practice[M]. New York: Springer, 2008: 23-25.
[17] CHONG E, ZAK S. An introduction to optimization[M]. New York: John Wiley & Sons, Inc., 2001: 145-148.