为解决现有船舶结构初步设计过程中精细化程度不足的问题,开展基于多工况拓扑优化算法的归一化数学模型研究及其典型应用探索。本文将多工况拓扑优化算法引入到船舶结构初步设计中,提出了基于k方法的权因子确定方法,引入全局化应力约束条件,建立考虑应力约束函数的多目标拓扑优化数学模型,并对某高双层底实肋板结构进行多工况静力学拓扑优化研究。结果表明,最终构型能够满足应力应变等基本约束条件且具备较好的工艺性。相关研究成果为运用拓扑优化方法进行船舶结构初步设计提供一条切实可行的途径,具有一定的理论与工程应用价值。
In order to solve the lack of refined degree in ship structural preliminary design process at the moment, this paper carries out the research and application exploration of normalization mathematical model based on the topology optimization algorithm. Considering the multi-cases topology optimization algorithm applied on ship structural preliminary design process, put forward the weight factor computing method based on the k-method. By the global stress restrain, the multi-objective topology optimization mathematical model involving the stress restrain function is established, and the research of multi-cases topology optimization of statics are conducted for the high plate floor design scheme. The results reveal that the final topology configuration of plate floor can satisfy the restrain conditions of the stress-strain, which has better manufacturability. The related achievements will provide a feasible way for ship structural preliminary design based on topology optimization method, which has normal academic significance and engineering application value.
2023,45(23): 13-18 收稿日期:2022-12-13
DOI:10.3404/j.issn.1672-7649.2023.23.003
分类号:U663.2
作者简介:陶鹏(1991-),男,硕士,工程师,研究方向为舰船总体设计
参考文献:
[1] 杨德庆, 柳拥军, 金咸定. 薄板减振降噪的拓扑优化设计方法[J]. 船舶力学, 2003, 07(5): 91–97
[2] 李启宏, 李海艳. 基于改进SIMP法的连续体结构拓扑优化方法研究[J]. 机电工程, 2021, 38(4): 428–433
[3] 刘宏亮. 油船中剖面结构拓扑优化研究[D]. 上海: 上海交通大学, 2014.
[4] 张会新, 杨德庆. 典型船舶板架拓扑与形状优化设计[J]. 中国舰船研究, 2015, 10(6): 27–33
[5] 徐飞鸿, 荣见华. 多工况下结构拓扑优化设计[J]. 力学与实践, 2004, 26: 50–53
[6] 刘辛军, 李枝东, 陈祥. 多工况拓扑优化问题的一种新解法——导重法[J]. 中国科学: 技术科学, 2011, 41(7): 920–928.
[7] 杨德庆, 隋允康, 刘正兴. 多工况应力约束下连续体结构拓扑优化设计映射变换解法[J]. 上海交通大学学报, 2000, 34(8): 1061–1065
[8] 叶红玲, 隋允康. 应力约束下连续体结构的拓扑优化[J]. 北京工业大学学报, 2006, 2(4): 301–305
[9] KIYONO C Y, VATANABE S L, SILVA E C N, et al. A new multi-p-norm formulation approach for stress-based topology optimization design[J]. Composite Structures, 2016.
[10] CHAU L, JULIAN N, TYLER B. Stress-based topology optimization for continua[J]. Struct Multidisc Optim, 2010, 41: 605–620
[11] HOLMBERG E, TORSTENFELT B, KLARBRING A. Stress constrained topology optimization[J]. Struct Multidisc Optim, 2013, 48: 33–47
[12] 中国船级社. 钢制海船入级规范船体篇[M]. 北京: 人民交通出版社, 2014.